Wytrzymałość-zginanie-zadanie 11

Witam ponownie i ponownie będziemy działać z belką z poprzedniego wpisu, ale tym razem inną, trudniejszą i GORSZĄ metodą.zginanie1

Wymiary belki i obciążenia są te same i to samo jest pytanie:

NARYSOWAĆ WYKRESU MOMENTU GNĄCEGO I SIŁY TNĄCEJ

Tak samo mamy 2 przedziały i w pierwszym przedziale x zawiera się w przedziale od 0 do a. A jak się zawiera od 0 do a, to może przyjąć każdą wartość z tego przedziału. A więc zasłaniamy kartką (TEN CZERWONY PROSTOKĄT-KOPERTA) i  odsłaniamy tylko tyle belki z lewej strony, żeby widzieć całą tą wartość dla pierwszego przedziałuzginanie8

Czyli widzimy od lewej strony tylko belkę o długości x. Liczymy moment, jaki działa na kartkę:
Mg(x) = q * a² – q * x * x/2
Pierwsza pozycja jest bardzo przejrzysta bo jest to moment przyłożony na lewym końcu, a druga pozycja to siła razy ramię – siła to q*x (obciążenie ciągłe razy długość na której ono działa) a ramię to odległość od KARTKI do POŁOWY widocznej części obciążenia ciągłego.

zginanie9

Analogicznie przechodzimy do drugiego przedziału. Tutaj zmienna x może wynosić od a do 2*a:
Mg(x) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a)
Druga pozycja to siła q*a (obciążenie ciągłe razy długość na której ono działa – teraz widzimy całe obciążenie ciągłe q) razy ramię czyli odległość od KARTKI do POŁOWY widocznego obciążenia ciągłego.

I w ten sposób policzyliśmy momenty gnące w zależności od x i jak teraz się podstawi odpowiednie wartości takie jak 0, a oraz 2*a to wyjdzie to samo co przy pierwszej metodzie, ale w trochę bardziej zagmatwany sposób, na przykład dla pierwszego przedziału dla x=0 czyli dla punktu A:
Mg(x=0) = q * a² – q * x * x/2 = q * a2 – q * 0 * 0/2 = q * a²
teraz gołym okiem widać że wychodzi to samo co przy pierwszej metodzie:
MgA = q * a²

Dla punktu B:
Mg(x=a) = q * a² – q * a * a/2 = q * a2 – 0,5*q * a2 = 0,5*q * a²

Dla punktu C:
Mg(x=2*a) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a) =
= q * a² – q * a * (2*a-a/2) + 4*q*a * (2*a-a) =
= q * a² – q * a * 1,5*a + 4*q*a * a = 3,5*q * a²zginanie5

Podobnie drugi GORSZY sposób wygląda dla sił tnących. Dla pierwszego przedziału podobnie zakrywamy kartką i odsłaniamy tyle żeby widzieć lewy koniec belki o długości x. I jakie siły (poprzeczne do belki czyli pionowe) widzimy:

zginanie8
T(x) = (-q) * x

Tylko obciążenie q o długości x.

Dla drugiego przedziału:

zginanie9
T(x) = (-q) * a + 4*q*a = 3*q*a

Podstawiając wartości x dla charakterystycznych punktów. Dla punktu A:
T(x=0) = (-q) * x = (-q) * 0 = 0

Dla punktu B z lewej strony:
T(x=a) = (-q) * a

Dla punktu B z prawej strony:
T(x=a) = 3*q*a

Dla punktu C:
T(x=2*a) = 3*q*a

zginanie7
Jak widać, w pierwszej metodzie wyszło dokładnie to samo.

Wytrzymałość-zginanie-zadanie 10

Witam ponownie i przy okazji mechaniki było coś na temat belek ale tutaj będzie trzeba obliczyć momenty gnące, siły tnące i narysować wykresy. Ale po kolei:

Mamy belkę wmurowaną ścianę i obciążoną momentem, siłą i obciążeniem ciągłym. I widać tutaj 2 przedziały : od punktu A do B i od B do C.zginanie1

Ponieważ reakcje w ścianie są na końcu belki, to nie ma sensu ich obliczać i w tym konkretnym przypadku wyjątkowo możemy nie uwalniać belki od więzów. 

I jedziemy od lewej strony:

Obliczamy momenty gnące w 3 charakterystycznych punktach na początku i końcu przedziałów: A, B i C.

Aby obliczyć moment w punkcie A zasłaniamy prawie całą belkę tak żeby było widać tylko punkt A i sam początek belki.

zginanie2

I co widać – moment skupiony w punkcie A:

MgA = q * a2

Tak samo postępujemy z punktem B – odsłaniamy tylko punkt B i wszystko co jest na lewo od niego.

zginanie3

Oprócz momentu skupionego w punkcie A pojawia się obciążenie ciągłe:

MgB = q * a² – q * a * a/2 = 0,5*q*a²

i teraz po kolei druga część czyli siła od obciążenia ciągłego q*a razy ramię a/2 czyli odległość połowy (obciążenia ciągłego q) do punktu B. A z tymi znakami to jest tak, że q*a² jest na plusie, bo próbuje PODNIEŚĆ koniec belki, a obciążenie ciągłe jest na minusie, bo chce OPUŚCIĆ koniec belki. Mówiąc inaczej q*a² kręci ZGODNIE ze wskazówkami zegara, a obciążenie ciągłe kręci PRZECIWNIE do zegara.

I dochodzimy do ściany czyli prawie do punktu C odsłaniając całą belkę oprócz punktu C. To tak jakbyśmy chcieli złapać za sam prawy koniec BELKI przy samej ścianie.

zginanie4

MgC = q * a² – q * a * 1,5*a + 4*q*a * a = 3,5*q*a²

Po kolei idąc to pierwsza cząstka pozostaje bez zmian i dalej siła od obciążenia ciągłego działa teraz na ramieniu 1,5*a, bo odległość ściany od środka obciążenia ciągłego jest 1,5*a. Siła 4*q*a działa na ramieniu a.

Rysujemy to co obliczyliśmy i poniżej powstał wykres momentu zginającego:

zginanie5

Teraz kolej na siły tnące i analogicznie idziemy od lewej strony:

zginanie2

TA = 0

Zasłaniamy prawie całą belkę i tylko odsłaniamy kawałek lewego przedziału tuz przy punkcie A – widać że żadna siła nie działa w poprzek belki (czyli w pionie-siła tnąca).

Przechodzimy do punktu B z lewej strony czyli odsłaniamy cały lewy przedział w taki sposób, aby nie było widać punktu B:

zginanie6

TBL = -q * a

Jedyna poprzeczna do belki siła (siła tnąca czyli w poprzek belki) którą widzimy to siła od obciążenia ciągłego q. A dlatego sobie przyjeliśmy minus, bo siła działa w dół.

Przemieszczamy się kawałek w prawo, aby było widać cały lewy przedział oraz punkt B i wtedy widać siłę tnącą z prawej strony punktu B:

zginanie3

TBP = -q * a + 4*q*a = 3*q*a

Oprócz obciążenia ciągłego w poprzek belki działa jeszcze 4*q*a.

Przesuwamy się jeszcze dalej w prawo aż dojdziemy prawie do ściany czyli tuż na lewo od ściany:

zginanie4

TC = -q * a + 4*q*a = 3*q*a

Rysujemy to co obliczyliśmy i powstał wykres siły tnącej:

zginanie7

I to jest pierwsza metoda, a w kolejnym odcinku trochę inna i trudniejsza metoda