Wytrzymałość – zginanie – zadanie 12 – linia ugięcia belki

Ponownie wracamy do belek, wcześniej obliczaliśmy reakcje w podporach i rysowaliśmy wykresy sił wewnętrznych.

zginanie1

Rozwinięciem poprzednich tematów jest obliczenie linii ugięcia. I co to tak naprawdę jest, bo teoria sobie ale dobrze jest wyobrazić sobie wszystko w praktyce?

Jak spojrzymy na belkę na powyższym obrazku (tą belkę już znamy z wcześniejszych zadań) to widać że jest ona obciążana różnymi siłami. Jak sobie wyobrazimy, że belka jest z materiału, który łatwo wygiąć to te obciążenia spowodują, że belka pod wpływem obciążeń nie będzie prosta tylko lekko się pokrzywi.

To jest tak, jakby ktoś złapał za 2 końce linijki i na środku położył ciężarek – linijka się wygnie.

I to równanie LINII UGIĘCIA to jest taka funkcja matematyczna, której wykres ma dokładnie taki kształt jak wygięta belka. To teraz jak to po kolei zrobić:
1. Dzielimy belke na przedziały i w każdym z nich piszemy moment gnący – to już było przy okazji rysowania wykresów, ale działamy:
Pierwszy przedział
Mg(x) = q * a² – q * x * x/2 = q * a2 – 0,5 * q * x²

Drugi przedział
Mg(x) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a) =
=  q * a² – q * a * x + 0,5 * q * a² + 4 * q * a * x – 4 * q * a² =
=  q * a² – q * a * x + 0,5 * q * a² + 4 * q * a * x – 4 * q * a² =
=  3 * q * a * x – 2,5 * q * a²
2. Dla każdego przedziału piszemy równanie różniczkowe linii ugięcia:
Pierwszy przedział:
E * J * d²y/dx2 = -Mg(x)
E * J * d²y/dx2 = 0,5 * q * x² – q * a²
Dwukrotnie całkujemy równanie stronami:
E * J * dy/dx = 0,5 * q * 1/3 * x³ – q * a² * x + c1
E * J * dy/dx = q * 1/6 * x³ – q * a² * x + c1
E * J * y = q * 1/6 * 1/4 * x³ * x – q * a² * 0,5 * x² + c1 * x + d1
E * J * y = q * 1/24 * x³ * x – 0,5 * q * a² * x² + c1 * x + d1 – równanie linii ugięcia dla pierwszego przedziału

I to samo drugi przedział:
E * J * d2y/dx2 = -Mg(x)
E * J * d2y/dx2 = 2,5 * q * a²- 3 * q * a * x
E * J * dy/dx = 2,5 * q * a² * x – 3 * q * a * 0,5 * x² + c2
E * J * dy/dx = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
E * J * y = 2,5 * q * a² * 0,5 * x² – 1,5 * q * a * 1/3 * x3 + c2 * x + d2
E * J * y = 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2 – równanie linii ugięcia dla drugiego przedziału

Jak już mamy równania linii ugięcia dla obu przedziałów, to jedyne co nie wiadomo, to stałe całkowania c1, d1, c2 oraz d2.

W tym celu:
3. Piszemy warunki brzegowe.
I należy zapytać co to są warunki brzegowe, ponieważ sama ta nazwa niewiele mówi:

zginanie10

Można sobie wyobrazić, w jaki sposób belka może zostać wygięta i przykład widać na rysunku powyżej czerwona linią przerywaną:
Na pewno na prawym końcu w punkcie C belka wychodzi ze ściany i wychodzi z tej ściany poziomo, a zacznie się wyginać dopiero kawałek od ściany.
Warunkiem brzegowym jest na przykład to, że wygięta belka zawsze wychodzi ze ściany poziomo niezależnie od tego, jak zostanie pogięta przez przyłozone obciążenia. I jak to zapisać:
y=0 dla x=2*a (pierwszy warunek brzegowy) – dosłownie znaczy tyle że na prawym końcu belka się nie ugnie, bo jest wmurowana do ściany
oraz
y’=0 dla x=2*a ( drugi warunek brzegowy) – i to też można opisać dosłownie – belka wychodzi ze ściany poziomo – styczna do belki w punkcie C jest pozioma – to znaczy tyle, że pochodna funkcji opisującej linię ugięcia belki w punkcie C bedzie równa zero.
Mamy 2 warunki brz³egowe, czyli będą potrzebne jeszcze dwa i one będą dotyczyć punktu B na styku przedziału lewego i prawego.

W punkcie B koniec pierwszego przedziału styka się z początkiem drugiego przedziału, a więc ugięcie na KOŃCU pierwszego przedziału będzie takie samo jak na POCZĄTKU drugiego przedziału i zapiszemy to następująco:
y1=y2 dla x=a (trzeci warunek brzegowy)
Po drugie styczna do belki na końcu pierwszego przedziału będzie taka sama jak styczna do belki na początku drugiego przedziału:
y1’=y2′ dla x=a (czwarty warunek brzegowy).

4. Warunki brzegowe wstawiamy do scałkowanych równań różniczkowych:
Na początek bierzemy drugi warunek brzegowy
y’=0 dla x=2*a
i wstawiamy do równania różniczkowego pierwszego stopnia z drugiego przedziału (dlatego że drugi warunek dotyczy pochodnej y’ oraz dotyczy drugiego przedziału):
E * J * dy/dx = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
E * J * 0 = 2,5 * q * a² * 2*a – 1,5 * q * a * (2*a)² + c2
0 = 5 * q * a³  – 6 * q * a³ + c2
0 =   (- q) * a³ + c2
Pierwsza stała całkowania dla drugiego przedziału
c2 = q * a³

Teraz bierzemy pierwszy warunek brzegowy
y=0 dla x=2*a
i wstawiamy do równania zerowego stopnia dla drugiego przedziału
E * J * y = 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2
Wstawiamy również obliczoną przed chwilą stałą całkowania
E * J * 0 = 1,25 * q * a² * (2*a)² – 0,5 * q * a * (2*a)³ + q * a³ * 2 * a + d2
0 = 5 * q * a³ * a – 4 * q * a³ * a  + q * a³ * a  * 2 + d2
0 = 3 * q * a³ * a  + d2
Druga stała całkowania dla drugiego przedziału
d2 = (-3) * q * a³ * a

Kolejno bierzemy czwarty warunek brzegowy:
y1’=y2′ dla x=a
i przyrównujemy równania pierwszego stopnia dla obu przedziałów
q * 1/6 * x³ – q * a² * x + c1 = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
wstawiając również obliczoną stałą całkowania c2:
q * 1/6 * a³ – q * a² * a + c1 = 2,5 * q * a² * a – 1,5 * q * a * a² + q * a³
(-5/6) * q * a³ + c1 = 2 * q * a³
Pierwsza stała całkowania dla drugiego przedziału
c1 = 2,8 * q * a³

I na koniec bierzemy trzeci warunek brzegowy:
y1=y2 dla x=a
i przyrównujemy równania zerowego stopnia dla obu przedziałów
q * 1/24 * x * x³ – 0,5 * q * a² * x²+ c1 * x + d1 =
= 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2

q * 1/24 * a* a³ – 0,5 * q * a* a³ + 2,8 * q * a* a³ + d1 =
= 1,25 * q * a* a³ – 0,5 * q * a* a³ + q * a* a³ + (-3) * q * a* a³

Pierwsza stała całkowania dla drugiego przedziału
d1 = (-1,25) * q * a* a³ – 2,3 * q * a* a³ = (-3,55) * q * a* a³

Obliczone stałe całkowania wstawiamy do równań linii ugięcia:
y1 = (q * 1/24 * x * x³ – 0,5 * q * a² * x² + c1 * x + d1 ) : EJ
y2 = (1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2) : EJ

y1 = (q * 1/24 * x * x³ – 0,5 * q * a² * x² + 2,8 * q * a³ * x – 3,55 * q * a * a³ ) : EJ
y2 = (1,25 * q * a² * x²- 0,5 * q * a * x³ + q * a³ *x – 3 * q * a * a³ ) : EJ

Wytrzymałość-zginanie-zadanie 11

Witam ponownie i ponownie będziemy działać z belką z poprzedniego wpisu, ale tym razem inną, trudniejszą i GORSZĄ metodą.zginanie1

Wymiary belki i obciążenia są te same i to samo jest pytanie:

NARYSOWAĆ WYKRESU MOMENTU GNĄCEGO I SIŁY TNĄCEJ

Tak samo mamy 2 przedziały i w pierwszym przedziale x zawiera się w przedziale od 0 do a. A jak się zawiera od 0 do a, to może przyjąć każdą wartość z tego przedziału. A więc zasłaniamy kartką (TEN CZERWONY PROSTOKĄT-KOPERTA) i  odsłaniamy tylko tyle belki z lewej strony, żeby widzieć całą tą wartość dla pierwszego przedziałuzginanie8

Czyli widzimy od lewej strony tylko belkę o długości x. Liczymy moment, jaki działa na kartkę:
Mg(x) = q * a² – q * x * x/2
Pierwsza pozycja jest bardzo przejrzysta bo jest to moment przyłożony na lewym końcu, a druga pozycja to siła razy ramię – siła to q*x (obciążenie ciągłe razy długość na której ono działa) a ramię to odległość od KARTKI do POŁOWY widocznej części obciążenia ciągłego.

zginanie9

Analogicznie przechodzimy do drugiego przedziału. Tutaj zmienna x może wynosić od a do 2*a:
Mg(x) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a)
Druga pozycja to siła q*a (obciążenie ciągłe razy długość na której ono działa – teraz widzimy całe obciążenie ciągłe q) razy ramię czyli odległość od KARTKI do POŁOWY widocznego obciążenia ciągłego.

I w ten sposób policzyliśmy momenty gnące w zależności od x i jak teraz się podstawi odpowiednie wartości takie jak 0, a oraz 2*a to wyjdzie to samo co przy pierwszej metodzie, ale w trochę bardziej zagmatwany sposób, na przykład dla pierwszego przedziału dla x=0 czyli dla punktu A:
Mg(x=0) = q * a² – q * x * x/2 = q * a2 – q * 0 * 0/2 = q * a²
teraz gołym okiem widać że wychodzi to samo co przy pierwszej metodzie:
MgA = q * a²

Dla punktu B:
Mg(x=a) = q * a² – q * a * a/2 = q * a2 – 0,5*q * a2 = 0,5*q * a²

Dla punktu C:
Mg(x=2*a) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a) =
= q * a² – q * a * (2*a-a/2) + 4*q*a * (2*a-a) =
= q * a² – q * a * 1,5*a + 4*q*a * a = 3,5*q * a²zginanie5

Podobnie drugi GORSZY sposób wygląda dla sił tnących. Dla pierwszego przedziału podobnie zakrywamy kartką i odsłaniamy tyle żeby widzieć lewy koniec belki o długości x. I jakie siły (poprzeczne do belki czyli pionowe) widzimy:

zginanie8
T(x) = (-q) * x

Tylko obciążenie q o długości x.

Dla drugiego przedziału:

zginanie9
T(x) = (-q) * a + 4*q*a = 3*q*a

Podstawiając wartości x dla charakterystycznych punktów. Dla punktu A:
T(x=0) = (-q) * x = (-q) * 0 = 0

Dla punktu B z lewej strony:
T(x=a) = (-q) * a

Dla punktu B z prawej strony:
T(x=a) = 3*q*a

Dla punktu C:
T(x=2*a) = 3*q*a

zginanie7
Jak widać, w pierwszej metodzie wyszło dokładnie to samo.

Wytrzymałość-zginanie-zadanie 10

Witam ponownie i przy okazji mechaniki było coś na temat belek ale tutaj będzie trzeba obliczyć momenty gnące, siły tnące i narysować wykresy. Ale po kolei:

Mamy belkę wmurowaną ścianę i obciążoną momentem, siłą i obciążeniem ciągłym. I widać tutaj 2 przedziały : od punktu A do B i od B do C.zginanie1

Ponieważ reakcje w ścianie są na końcu belki, to nie ma sensu ich obliczać i w tym konkretnym przypadku wyjątkowo możemy nie uwalniać belki od więzów. 

I jedziemy od lewej strony:

Obliczamy momenty gnące w 3 charakterystycznych punktach na początku i końcu przedziałów: A, B i C.

Aby obliczyć moment w punkcie A zasłaniamy prawie całą belkę tak żeby było widać tylko punkt A i sam początek belki.

zginanie2

I co widać – moment skupiony w punkcie A:

MgA = q * a2

Tak samo postępujemy z punktem B – odsłaniamy tylko punkt B i wszystko co jest na lewo od niego.

zginanie3

Oprócz momentu skupionego w punkcie A pojawia się obciążenie ciągłe:

MgB = q * a² – q * a * a/2 = 0,5*q*a²

i teraz po kolei druga część czyli siła od obciążenia ciągłego q*a razy ramię a/2 czyli odległość połowy (obciążenia ciągłego q) do punktu B. A z tymi znakami to jest tak, że q*a² jest na plusie, bo próbuje PODNIEŚĆ koniec belki, a obciążenie ciągłe jest na minusie, bo chce OPUŚCIĆ koniec belki. Mówiąc inaczej q*a² kręci ZGODNIE ze wskazówkami zegara, a obciążenie ciągłe kręci PRZECIWNIE do zegara.

I dochodzimy do ściany czyli prawie do punktu C odsłaniając całą belkę oprócz punktu C. To tak jakbyśmy chcieli złapać za sam prawy koniec BELKI przy samej ścianie.

zginanie4

MgC = q * a² – q * a * 1,5*a + 4*q*a * a = 3,5*q*a²

Po kolei idąc to pierwsza cząstka pozostaje bez zmian i dalej siła od obciążenia ciągłego działa teraz na ramieniu 1,5*a, bo odległość ściany od środka obciążenia ciągłego jest 1,5*a. Siła 4*q*a działa na ramieniu a.

Rysujemy to co obliczyliśmy i poniżej powstał wykres momentu zginającego:

zginanie5

Teraz kolej na siły tnące i analogicznie idziemy od lewej strony:

zginanie2

TA = 0

Zasłaniamy prawie całą belkę i tylko odsłaniamy kawałek lewego przedziału tuz przy punkcie A – widać że żadna siła nie działa w poprzek belki (czyli w pionie-siła tnąca).

Przechodzimy do punktu B z lewej strony czyli odsłaniamy cały lewy przedział w taki sposób, aby nie było widać punktu B:

zginanie6

TBL = -q * a

Jedyna poprzeczna do belki siła (siła tnąca czyli w poprzek belki) którą widzimy to siła od obciążenia ciągłego q. A dlatego sobie przyjeliśmy minus, bo siła działa w dół.

Przemieszczamy się kawałek w prawo, aby było widać cały lewy przedział oraz punkt B i wtedy widać siłę tnącą z prawej strony punktu B:

zginanie3

TBP = -q * a + 4*q*a = 3*q*a

Oprócz obciążenia ciągłego w poprzek belki działa jeszcze 4*q*a.

Przesuwamy się jeszcze dalej w prawo aż dojdziemy prawie do ściany czyli tuż na lewo od ściany:

zginanie4

TC = -q * a + 4*q*a = 3*q*a

Rysujemy to co obliczyliśmy i powstał wykres siły tnącej:

zginanie7

I to jest pierwsza metoda, a w kolejnym odcinku trochę inna i trudniejsza metoda