Odkształcenie temperaturowe w układzie prętowym – zadanie 18

Tutaj mamy zadanie z odkształceniem temperaturowym w układzie prętowym, gdzie do poziomej sztywnej belki przymocowano przegubowo 2 odkształcalne pręty, z których jeden jest pionowo, a drugi leci pod kątem.
rozciaganie6 - Odkształcenie temperaturowe w układzie prętowym - zadanie 18
Co ciekawe to oba pręty przymocowano do tego samego punktu sztywnej belki, ORAZ po zmontowaniu skośny pręt podgrzano o temperaturę ΔT – no i tutaj pręt odkształci się pod wpływem zmiany temperatury. Mówiąc innymi słowami podgrzany pręt stanie się za długi i wywoła odkształcenie drugiego pionowego pręta. Autor zadaje pytanie:

OBLICZ SIŁY W PRĘTACH

Krok po kroku jak do tego podejść?

Po pierwsze
Uwalniamy układ prętowy od więzów czyli zastępujemy pręty i podporę przegubową siłami (na razie nie myślimy o odkształceniu temperaturowym).
rozciaganie7 - Odkształcenie temperaturowe w układzie prętowym - zadanie 18
Po drugie
Piszemy równania równowagi.

Mechanika – statyka – zaczynamy od podstaw

ΣPix = S2 * sin45º – Rx = 0
ΣPiy = Ry – S1 – S2 * cos45º = 0
ΣMiB = S1 * L + S2 * cos45º * L = 0
Jak widać mamy 3 równania i 4 niewiadome ( Rx , Ry , S1 , S2 ) czyli mamy

UKŁAD STATYCZNIE NIEWYZNACZALNY

a więc potrzebne jest dodatkowe równanie geometryczne.

Po trzecie
Zakładamy w jaki sposób belka obróci się względem punktu B po podgrzaniu skośnego pręta.
Wiadomo, że jak skośny pręt się podgrzeje, to się wydłuży i będzie się starał podnieść DO GÓRY prawy wolny koniec belki. Wtedy belka obróci się o niewielki kąt względem osi obrotu (punkt B). I tutaj jest ważne założenie:

PUNKT MOCOWANIA PRĘTÓW (tutaj punkt C) PRZEMIEŚCI SIĘ PO PROSTEJ PROSTOPADŁEJ
DO
LINII ŁĄCZĄCEJ PUNKT MOCOWANIA PRĘTÓW  (tutaj punkt C)
Z OSIĄ OBROTU BELKI (tutaj punkt B).

I teraz jest najlepsze:

Odległość CC’ wynosi tyle ile wydłużył się pionowy pręt czyli:
CC’ = ΔL1

Ze skośnym prętem będzie trochę trudniej ponieważ leci on po skosie a po drugie to jest podgrzewany. I to jest tak że skośny pręt układu pod wpływem temperatury (albo zmiany temperatury) wydłuży się o ΔLt:

ΔLt = ΔT * a * √2   * L

zwane odkształceniem temperaturowym.

Do tego wydłużonego skośnego pręta drugi pionowy pręt będzie za długi i teraz zajdzie zajdzie ciekawe zjawisko:
– pionowy pręt trochę się wydłuży
– skośny pręt ( wcześniej wydłużony o ΔLt – odkształcenie temperaturowe) trochę  się  skróci aby oba pręty mogły się  spotkać w jednym miejscu – punkcie mocowania prętów do belki (punkt C’)
rozciaganie8 - Odkształcenie temperaturowe w układzie prętowym - zadanie 18
Na powyższym rysunku widzimy dwa skośne pręty:
– zielony PRZED odkształceniem
– i ten sam ale niebieski – PO odkształceniu

I teraz wyszło że powstał trójkąt w którym:
– jeden z boków odpowiada ΔLt-ΔL2
– drugi z boków odpowiada przemieszczeniu punktu C czyli CC’
– kąt 45º odpowiada położeniu skośnego pręta
rozciaganie9 - Odkształcenie temperaturowe w układzie prętowym - zadanie 18
Jak się narysuje ten trójkąt większy , to więcej widać i widać też że można tu zastosować najprostszą trygonometrię:
cos45º = (ΔLt – ΔL2) / CC’
a można to zapisać tak:
cos45º * CC’ = ΔLt – ΔL2

 

Po czwarte
I teraz w to można i trzeba wmanewrować prawo Hooke’a

Wytrzymałość materiałów-ponownie podstawy

 

siła w pręcie  x  długość pręta
wydłużenie = ——————————————————————————-
moduł Younga  x  przekrój

 

i dla pręta skośnego wydłużenie mechaniczne będzie wyglądać w następujący sposób:

 

                  S2  * √2   *  L

ΔL2 = —————————————————————————

E  *  A

 

a dla pręta pionowego którego wydłużenie równa się przemieszczeniu punktu CC’:

 

               S1   *  L

ΔL1 = ———————————————————————————–

E  *  A

 

Po piąte

I to wszystko można teraz wstawić do wzoru na cos45º :

cos45º * CC’ = ΔLt – ΔL2

cos45º * S1*L / (E*A) = ΔT*a * √2  * L – S2 * √2  * L / (E*A)

Dzielimy obie strony przez L i mnożymy przez E*A:

0,5 * √2 * S1 = ΔT * a * √2 * E * A – S2 * √2

Dzielimy przez pierwiastek z 2:

0,5 * S1 = ΔT * a * E * A – S2

Jak się wyliczy S1 z trzeciego równania statycznego na sumę momentów:
S1*L + S2 * cos45º * L = 0
S1 + S2 * cos45º = 0
S1 = (-S2) * cos45º

i wstawi do równania geometrycznego:

0,5 * (-S2) * cos45º = ΔT * a * E * A – S2

To można obliczyć siłę w pręcie skośnym:
(-0,35) * S2 = ΔT * a * E * A – S2
0,65 * S2 = ΔT * a * E * A
S2 = 1,5 * ΔT * a * E * A

I również z równania na sumę momentów wyliczamy siłą w pręcie pionowym:
S1 = (-S2)*cos45º = (-1,5) * ΔT * a * E * A * cos45º =
= (-1,1) * ΔT * a * E * A

Trójkierunkowy stan naprężenia sześcianu- wytrzymałość – zadanie 14

Wcześniej omawialiśmy podstawy uogólnionego prawa Hooke’a i trójkierunkowy stan naprężenia,

Wytrzymałość – prawo Hooke’a dla skręcania – podstawy

a teraz jakieś zadanie w tym temacie z sześcianem pomiędzy dwiema nieodkształcalnymi ścianami:

Między 2 nieodkształcalne ściany wciśnięto sześcian o boku a. Sześcian jest materiału który może się odkształcić. Różnica między szczeliną między ścianami o długością boku sześcianu wynosi d. Dany jest moduł Younga i stała Poissona dla materiału sześcianu.

Pytają się o nacisk jednostkowy sześcianu na obie ściany , po tym jak go wcisnęli między te ściany.

rozciaganie51 - Trójkierunkowy stan naprężenia sześcianu- wytrzymałość - zadanie 14

Sprawa jest prosta, ponieważ trzeba sześcian ścisnąć o d zeby go wsunąć
miedzy 2 ściany.
Warto sobie obrać układ współrzędnych i niech osie ”x” i ”y” będą leciały równolegle do ściany (jedna w pionie druga w poziomie), a oś ”z” będzie do ścian prostopadła.

Po pierwsze

Na początek piszemy 3 równania opisujące trójkierunkowy stan naprężenia sześcianu
εx = σx/E – ν*σy/E – ν*σz/E [1]
εy = σy/E – ν*σx/E – ν*σz/E [2]
εz = σz/E – ν*σx/E – ν*σy/E [3]
i tak jak wcześniej mówiliśmy te 3 równania ZAWSZE wystąpią w tego typu zadaniach.

I teraz jak spojrzymy na nie dokładniej to widać że mamy 6 niewiadomych:
– odkształcenia względne wzdłuż 3 osi – εx,  εy , εz
– naprężenia wzdłuż 3 osi – σx , σy , σz
I teraz to zaczyna być logiczne, że potrzebujemy 6 równań żeby policzyć 6 niewiadomych. A ponieważ już mamy 3 (te powyżej) , to musimy wymyśleć 3 dodatkowe.

I teraz będzie część druga

Wiadomo że wzdłuż osi równoległych do ściany naprężenie wynosi ZERO, ponieważ na 4 powierzchnie nie stykające się ze ścianami  nic nie naciska.
σx = σy = 0 [4] i [5]
Wiadomo że w kierunku ”z” sześcian został ściśnięty o d na długości jego boku czyli a. To teraz obliczymy odkształcenie względne w kierunku ”z”:
εz = d/a [6]

Po trzecie – to już czysta matematyka
Mamy teraz 6 równań i 6 niewiadomych i wstawimy równania [4] , [5] i [6] do równań [1] , [2] oraz [3]. I dalej pójdzie z górki:
εx = 0/E – ν*0/E – ν*σz/E [1]
εy = 0/E – ν*0/E – ν*σz/E [2]
d/a = σz/E – ν*0/E – ν*0/E [3]
Po uproszczeniu to wygląda trochę lepiej:
εx =  – ν*σz/E [1]
εy = – ν*σz/E [2]
d/a = σz/E [3]

Z równania [3] obliczymy naprężenie w kierunku ”z” czyli nacisk jednostkowy na ściany:
σz = E * d/a

i o to pytał się autor zadania.
Dodatkowo z równań [1] i [2] obliczymy odkształcenia względne w kierunkach równoległych do ściany:
εy = εx = -ν*σz/E = -ν * ( E * d/a ) / E =  -ν * ( d/a )

Prawda że proste?

Trójkierunkowy stan naprężenia – ponownie podstawy

Temat trójkierunkowego stanu naprężenia wiąże się pośrednio z tematem rozciągania, ponieważ prawo Hooke’a słusznie kojarzone jest z wydłużeniem pręta:

Wytrzymałość materiałów-ponownie podstawy

 

                               siła * długość pręta

wydłużenie = ———————————————–

    moduł Younga * pole przekroju

 

dotyczy zmiany wymiaru w JEDNYM kierunku – długości.

Przy drobnej modyfikacji powyższego prostego wzoru można nim opisać zmianę wymiarów elementu odkształcalnego w 3 prostopadłych kierunkach.

A tak mówiąc prostymi słowami to na przykład gdy weźmiemy kawałek plasteliny, położymy na stole i naciśniemy na nią, to ona się spłaszczy, ale jednocześnie rozejdzie się na boki. Czyli zmniejszy się jej wysokość, ale zwiększy szerokość i długość. To teraz weźmy ponownie prawo Hooke’a:

 

S * L

L    =   ————————–

E * F

 

Jak podzielimy obie strony przez L:

 

L              S

 = ———–

L                 E * F

I teraz można zapisać L/L jako wydłużenie względne:

L/L =

i wstawić do równania powyżej:

 

S

= ————–

E * F

 

I można przypomnieć że siła podzielona przez przekrój daje naprężenie:

S/F =

I ponownie wprowadzamy to do równania powyżej (prawa Hooke’a):

= / E

I to co dostaliśmy to dalej dotyczy JEDNOKIERUNKOWEGO stanu naprężenia czyli na przykład rozciągania pręta. A teraz jak to będzie wyglądało dla naciskania i rozpłaszczania kawałka plasteliny czyli TRÓJKIERUNKOWEGO stanu naprężenia, czyli oto mamy UOGÓLNIONE PRAWO HOOKE’A:

x = x/E – *y/E – *z/E

I to dotyczy osi x i prostopadłych do niej z oraz y. Pierwszy składnik jest identyczny jak dla JEDNOKIERUNKOWEGO stanu naprężenia. Drugi i trzeci składnik poprzedzony MINUSEM dotyczy odkształceń w kierunkach prostopadłych do osi x (i dlatego tu jest minus, bo jak ściśniemy plastelinę, to ona się spłaszczy-zmniejszy się wymiar i jednocześnie rozejdzie na boki-2 prostopadłe wymiary się zwiększą).  I tu się pojawia tajemnicze oznaczenie:

– stała Poissona

i to jest taka liczba, inna dla każdego materiału, która opisuje ile dany materiał rozpłaszczy się na boki, jak go naciśniemy z góry (stąd ten przykład z rozgniataniem kawałka plasteliny). Analogiczna sytuacja wystąpi dla 2 pozostałych osi:

y = y/E – *x/E – *z/E

z = z/E – *x/E – *y/E

Następnym razem zrobimy proste zadanie z tego tematu.

Rozciąganie prętów – wytrzymałość – zadanie 9

Mamy kolejne trudniejsze zadanie z rozciągania prętów

rozciaganie2 - Rozciąganie prętów - wytrzymałość - zadanie 9

To teraz trzeba jasno powiedzieć, jak to działa:
Pozioma sztywna belka (to poziome najgrubsze od punktu A do punktu B) ma oś obrotu w połowie długości w punkcie O (podpora PRZEGUBOWA STAŁA). Do obu końców belki w punktach A i B przymocowano 2 PRĘTY ( na przykład cienkie druty). Lewa linka leci pionowo do samej ziemi i tam jest przymocowana. Prawa linka idzie pod kątem 60 stopni do poziomu i też jest przymocowana do ziemi. Tylko jak dobrze widać, to prawa linka jest dłuższa, bo leci pod kątem. I do belki sztywnej przyłożono moment M, czyli ktoś próbuje kręcić belką przeciwnie do wskazówek zegara. I tu trzeba położyć akcent na PRÓBUJE KRĘCIĆ ponieważ te 2 cięgna nie pozwalają i utrzymują belkę prawie że w poziomie. A dlaczego prawie:
Ponieważ zgodnie z prawem Hooke’a cięgna trochę zmienią długość i belka MINIMALNIE odchyli się od poziomu.

Jak wiadomo, jak to wszystko działa, to uwalniamy belkę sztywną od więzów, czyli zastępujemy cięgna i podporę przegubową siłami:

rozciaganie3 - Rozciąganie prętów - wytrzymałość - zadanie 9

W podporze są dwie reakcje bo jest to podpora PRZEGUBOWA STAŁA.
Piszemy równania równowagi, a będą ich TRZY, ponieważ jest to układ sił PŁASKI ROZBIEŻNY (rozbieżny bo wszystkie siły nie zbiegają się w jednym punkcie)
ΣPix = Rx + S2*cos60stopni = 0 [1]
ΣPiy = (-S1) – Ry – S2*sin60stopni = 0 [2]
ΣMio = M + S1*l – S2*sin60stopni * l = 0 [3]
Jak widać są trzy równania i cztery niewiadome – a więc mamy zadanie STATYCZNIE NIEWYZNACZALNE. Potrzebne jest kolejne równanie, w tym przypadku przeprowadzimy analizę odkształceń.

rozciaganie4 - Rozciąganie prętów - wytrzymałość - zadanie 9

Rysujemy sobie belkę w 2 położeniach:
– przed odkształceniem – to jest to poziome zaczynające się w punkcie A przechodzące przez O i dochodzące do B
– po odkształceniu – to co jest pod kątem i przechodzi przez punkt O

W tym miejscu należy postawić dwa założenia:
– po pierwsze punkt A nie porusza się po łuku tylko po prostej AA’ (i tak samo jest z punktem B)
– po drugie kąt pręta 2 (tego prawego) do poziomu nie zmienia się po odkształceniu – jak było 60° do poziomu, tak również jest 60° do poziomu po odkształceniu – i to jak widać powyżej, widzimy 2 równoległe pręty – pręt przed odkształceniem i pręt po odkształceniu

Z twierdzenia Talesa:

l          l
—- = ——-
Δl1    BB’

Z trójkąta BB’C:

sin60° =  Δl2 / BB’

BB’ = Δl2 / sin60°

Wprowadzając do równania z twierdzenia Talesa:

l                  l
—– = ——————
Δl1       Δl2/sin60°

Jeżeli ułamki są równe to ich mianowniki też są równe:
Δl1 = Δl2/sin60°

Zmiany długości prętów Δl1 i Δl2 obliczamy z prawa Hooke’a mówiącego o rozciąganiu prętów:

Wytrzymałość materiałów-ponownie podstawy

 

          S1 * l
Δl1 = ———-
E * F

         S2 * l2
Δl2 = ————
E * F

gdzie: l2- długość pręta 2

sin60° = l / l2

l2 = l / sin60°

     S2 * l
Δl2 = ——————-
E*F*sin60°

Wracając do twierdzenia Talesa:

S1*l            S2 * l
——– = ——————-
E*F         E*F*sin60°

Dzielimy obie strony powyższego równania przez l i mnożymy przez (E*F)
S1 = S2/ sin60°

Powstało [4] równanie obok [1] [2] i [3] i można obliczyć wszystkie niewiadome S1 , S2 , Rx , Ry.

Rx + S2 * cos60° = 0 [1]
(-S1) – Ry – S2 * sin60° = 0 [2]
M + S1*l – S2*sin60° * l = 0 [3]
sin60° * S1 = S2 [4]

Wstawiamy równanie [4] do [3]:
M + S1*l – sin60° * S1*sin60° * l = 0 [3]
M + S1*l*(1-sin60°) = 0 [3]
M = S1*l*(sin60° – 1) = S1 * l * ( -0,25 ) [3]
Z tego obliczymy siłę w lewym pręcie:
S1 = (-4*M) : l
I na koniec z równania [3] obliczymy siłę w prawym skośnym pręcie:
M + S1*l = S2*sin60°*l
S2 = M : ( l*sin60° ) + S1: ( sin60° ) =
= M : ( l*sin60° ) + (-4*M) : ( l * sin60° ) = (-3*M) : ( l*sin60° )=
= (-3,5*M) : l

Rozciąganie pręta – zadanie statycznie niewyznaczalne

Poprzednio rozpoczęliśmy podstawy wytrzymałości

Wytrzymałość materiałów-ponownie podstawy a teraz może zadanie z rozciągania pręta i do tego statycznie niewyznaczalne:

rozciaganie1 - Rozciąganie pręta - zadanie statycznie niewyznaczalne

  Mamy dane przekroje pręta A, moduł Younga E, siłę P i długość l. Pytają się o reakcje utwierdzenia w suficie i podłodze

O co tutaj chodzi?

Ktoś wziął pręt o zmiennym przekroju, jednym końcem przyspawał do podłogi, a górnym końcem przyspawał do sufitu. Jak widać na rysunku całą wysokość pręta podzielono na 3 przedziały i na granicy pierwszego i drugiego oraz drugiego i trzeciego przedziału przyłożono siły 4*P oraz P.

Po pierwsze uwalniamy słup od więzów, czyli zastępujemy sufit i podłogę siłami utwierdzenia obojętnie w którą stronę, ale później się tego trzymamy.

Gdy są już reakcje utwierdzenia to można napisać:

Sumę rzutów sił na oś y, która leży w pionie (w osi słupa):

Piy = P + S1 – 4*P – S2 = 0

Przyjmujemy że siła do góry jest z PLUSEM a siła w dół jest z MINUSEM. Potem można powyższe równanie uprościć i dostaniemy to co poniżej:

Piy = S1 – 3*P – S2 = 0 (1)

W tym równaniu są 2 niewiadome: S1 i S2 czyli to zadanie jest statycznie niewyznaczalne.

Aby je obliczyć musi być kolejne równanie – tym razem GEOMETRYCZNE mówiące, że

suma wydłużeń poszczególnych odcinków (a są trzy i każdy o długości l) musi być równa ZERO.

To jest tak, że jak pierwszy odcinek wydłuży się o 1mm i drugi odcinek wydłuży się o 2mm, to w wyniku tego trzeci odcinek skróci się o 3mm. A to dlatego że odległość między podłogą i sufitem zawsze będzie 3*l:

l1 + l2 + l3 = 0

gdzie l to poszczególne wydłużenia poszczególnych odcinków

Teraz trzeba użyć prawa Hooke’a, które ściśle wiąże się z rozciąganiem pręta. Mówi ono że:

siła * długość pręta

wydłużenie      =    ————————————————————————–

moduł Younga * pole przekroju

Ponieważ mamy 3 przedziały, to w każdym z nich musimy określić siłę rozciągającą pręt czyli siłę normalną. Żeby sobie ułatwić to można użyć kawałka kartki, którym będziemy zakrywać część słupa.

Dla pierwszego przedziału (patrząc od góry) zakrywamy tak, żeby widzieć kawałek tego pierwszego przedziału.

Teraz przepisujemy siły, które widzimy – no i widzimy S1:

N1 = S1

Następnie odsłaniamy trochę więcej słupa w taki sposób, żeby widzieć pierwszy przedział (licząc od góry) i kawałek drugiego przedziału. I oto co widzimy:

N2 = S1 – 4*P

W kolejnym kroku odsłaniamy jeszcze więcej słupa, tak żeby całkowicie widzieć pierwszy i drugi przedział (licząc od góry) oraz kawałek trzeciego. Siły normalne w trzecim przedziale:

N3 = S1 – 4*P + P = S1 – 3*P

Teraz już mając siły w poszczególnych przedziałach (N), długości tych przedziałów (l), moduł Younga (E) oraz przekroje (A) w każdym z przedziałów można to wszystko wstawić do prawa Hooke i równania geometrycznego:

 

N1*l             N2*l              N3*l

———- + ————– + ————- = 0

E*2*A         E*2*A            E*A

 

Po wstawieniu wartości sił normalnych wyjdzie coś takiego:

 

S1*l            (S1-4*P)*l            (S1-3*P)*l

———- + ——————– + ——————– = 0

E*2*A              E*2*A                   E*A

 

Teraz dobrze będzie to wszystko uprościć, czyli mnożymy obie strony przez (E*A) i dzielimy przez l:

 

S1             (S1-4*P)        S1-3*P

—– + —————— + —————- = 0 (2)

2                   2                    1

 

Z tego wszystkiego można wyciągnąć reakcję utwierdzenia S1:

2*S1 = 5*P

S1 = 2,5*P

Reakcję S1 wstawiamy do sumy rzutów na oś y i obliczamy z tego S2:

S1 – 3*P – S2 = 0

S1 – 3*P = S2

S2 = 2,5*P – 3*P = (-0,5*P)

Reakcje utwierdzenia wynoszą: S1 = 2,5*P oraz S2 = (-0,5*P).

To nie jest jedyny typ zadania statycznie niewyznaczalnego (z rozciągania prętów) ale o tym innym razem