Wytrzymałość – rozciąganie – układ statycznie niewyznaczalny – zadanie 18

Tutaj mamy zadanie z układem statycznie niewyznaczalnym, gdzie do poziomej sztywnej belki przymocowano przegubowo 2 odkształcalne pręty, z których jeden jest pionowo, a drugi leci pod kątem.
rozciaganie6
Co ciekawe to oba pręty przymocowano do tego samego punktu sztywnej belki, ORAZ po zmontowaniu skośny pręt podgrzano o temperaturę ΔT. Autor zadaje pytanie:

OBLICZ SIŁY W PRĘTACH

Gołym okiem widać, że jak się podgrzeje skośny pręt to on sie wydłuży i bedzie za długi żeby całość zachowała początkowe wymiary.

Po pierwsze
Uwalniamy układ od więzów czyli zastępujemy pręty i podporę przegubową siłami.
rozciaganie7
Po drugie
Piszemy równania równowagi.
ΣPix = S2 * sin45º – Rx = 0
ΣPiy = Ry – S1 – S2 * cos45º = 0
ΣMiB = S1 * L + S2 * cos45º * L = 0
Jak widać mamy 3 równania i 4 niewiadome ( Rx , Ry , S1 , S2 ) a więc potrzebne jest dodatkowe równanie geometryczne.

Po trzecie
Zakładamy w jaki sposób belka obróci się względem punktu B po podgrzaniu skośnego pręta.
Wiadomo, że jak skośny pręt się podgrzeje, to się wydłuży i będzie sie starał podnieść DO GÓRY prawy wolny koniec belki. Wtedy belka obróci się o niewielki kąt względem osi obrotu (punkt B). I tutaj jest ważne założenie:

PUNKT MOCOWANIA PRĘTÓW (tutaj punkt C) PRZEMIEŚCI SIĘ PO PROSTEJ PROSTOPADŁEJ
DO
LINII ŁĄCZĄCEJ PUNKT MOCOWANIA PRĘTÓW  (tutaj punkt C)
Z OSIĄ OBROTU BELKI (tutaj punkt B).

I teraz jest najlepsze:

Odległość CC’ wynosi tyle ile wydłużył się pionowy pręt czyli:
CC’ = ΔL1

Ze skośnym prętem będzie trochę trudniej ponieważ leci on po skosie a po drugie to jest podgrzewany. I to jest tak że skośny pręt pod wpływem temperatury (albo zmiany temperatury) wydłuży się o ΔLt:

ΔLt = ΔT * a * \/2   * L

ale do tego wydłużonego skośnego pręta drugi pionowy pręt będzie za długi i teraz zajdzie zajdzie ciekawe zjawisko:
– pionowy pręt trochę się wydłuży
– skośny pręt ( wcześniej wydłuzony o ΔLt ) troche  się  skróci aby oba prety mogły się  spotkać w jednym miejscu – punkcie mocowania prętów do belki (punkt C’)
rozciaganie8
Na powyższym rysunku widzimy dwa skośne pręty:
– zielony PRZED odkształceniem
– i ten sam ale niebieski – PO odkształceniu

I teraz wyszło że powstał trójkąt w którym:
– jeden z boków odpowiada ΔLt-ΔL2
– drugi z boków odpowiada przemieszczeniu punktu C czyli CC’
– kąt 45º odpowiada połozeniu skośnego pręta
rozciaganie9
Jak się narysuje ten trójkąt większy , to więcej widać i widać też że można tu zastosować najprostszą trygonometrię:
cos45º = (ΔLt – ΔL2) / CC’
a można to zapisać tak:
cos45º * CC’ = ΔLt – ΔL2

 

Po czwarte
I teraz w to można i trzeba wmanewrować prawo Hooke

 

siła w pręcie  x  długość pręta
wydłużenie = ——————————————————————————-
moduł Younga  x  przekrój

 

i dla pręta skośnego wydłużenie mechaniczne będzie wyglądac w następujący sposób:

 

                  S2  *  \/2   *  L

ΔL2 = —————————————————————————

E  *  A

 

a dla pręta pionowego którego wydłużenie równa się przemieszczeniu punktu CC’:

 

               S1   *  L

ΔL1 = ———————————————————————————–

E  *  A

 

I to wszystko można teraz wstawić do wzoru na cos45oº :

cos45º * CC’ = ΔLt – ΔL2

cos45º * S1*L / (E*A) = ΔT*a * \/2  * L – S2 * \/2  * L / (E*A)

Dzielimy obie strony przez L i mnożymy przez E*A:

0,5 * \/2 * S1 = ΔT * a * \/2 * E * A – S2 * \/2

Dzielimy przez pierwiastek z 2:

0,5 * S1 = ΔT * a * E * A – S2

Jak się wyliczy S1 z trzeciego równania statycznego na sumę momentów:
S1*L + S2 * cos45º * L = 0
S1 + S2 * cos45º = 0
S1 = (-S2) * cos45º

i wstawi do równania geometrycznego:

0,5 * (-S2) * cos45º = ΔT * a * E * A – S2

To można obliczyć siłę w pręcie skośnym:
(-0,35) * S2 = ΔT * a * E * A – S2
0,65 * S2 = ΔT * a * E * A
S2 = 1,5 * ΔT * a * E * A

I również z równania na sumę momentów wyliczamy siłą w pręcie pionowym:
S1 = (-S2)*cos45º = (-1,5) * ΔT * a * E * A * cos45º =
= (-1,1) * ΔT * a * E * A

Wytrzymałość – uogólnione prawo Hooke’a – zadanie 14

Wcześniej omawialiśmy podstawy uogólnionego prawa Hooke’a, a teraz jakieś zadaniew tym temacie:

Między 2 nieodkształcalne ściany wciśnięto sześcian o boku a. Sześcian jest materiału który może się odkształcić. Różnica między szczeliną między ścianami o długością boku sześcianu wynosi d. Dany jest modul Younga i stała Poissona dla materiału sześcianu.

Pytają się o nacisk jednostkowy sześcianu na obie ściany , po tym jak go wcisnęli między te ściany.

rozciaganie5

Sprawa jest prosta, ponieważ trzeba sześcian ścisnąć o d zeby go wsunąć
miedzy 2 ściany.
Warto sobie obrać układ współrzędnych i niech osie ”x” i ”y” będą leciały równolegle do ściany (jedna w pionie druga w poziomie), a oś ”z” będzie do ścian prostopadła.
Na początek piszemy 3 równania opisujące trójkierunkowy stan naprężenia
εx = σx/E – ν*σy/E – ν*σz/E [1]
εy = σy/E – ν*σx/E – ν*σz/E [2]
εz = σz/E – ν*σx/E – ν*σy/E [3]
i tak jak wcześniej mówiliśmy te 3 równania ZAWSZE wystąpią w tego typu zadaniach.

I teraz jak spojrzymy na nie dokładniej to widać że mamy 6 niewiadomych:
– odkształcenia względne wzdłuż 3 osi – εx,  εy , εz
– naprężenia wzdłuż 3 osi – σx , σy , σz
I teraz to zaczyna być logiczne, że potrzebujemy 6 równań żeby policzyć 6 niewiadomych. A ponieważ już mamy 3 (te powyżej) , to musimy wymyśleć 3 dodatkowe.
Wiadomo że wzdłuż osi równoległych do ściany naprężenie wynosi ZERO, ponieważ na 4 powierzchnie nie stykające się ze ścianami  nic nie naciska.
σx = σy = 0 [4] i [5]
Wiadomo że w kierunku ”z” sześcian został ściśnięty o d na dlugosci jego boku czyli a. To teraz obliczymy odksztalcenie wzgledne w kierunku ”z”:
εz = d/a [6]
Mamy teraz 6 równań i 6 niewiadomych i wstawimy równania [4] , [5] i [6] do równań [1] , [2] oraz [3]. I dalej pójdzie z górki:
εx = 0/E – ν*0/E – ν*σz/E [1]
εy = 0/E – ν*0/E – ν*σz/E [2]
d/a = σz/E – ν*0/E – ν*0/E [3]
Po uproszczeniu to wygląda trochę lepiej:
εx =  – ν*σz/E [1]
εy = – ν*σz/E [2]
d/a = σz/E [3]

Z równania [3] obliczymy naprężenie w kierunku ”z” czyli nacisk jednostkowy na ściany:
σz = E * d/a

i o to pytał się autor zadania.
Dodatkowo z równań [1] i [2] obliczymy odkształcenia względne w kierunkach równoległych do ściany:
εy = εx = -ν*σz/E = -ν * ( E * d/a ) / E =  -ν * ( d/a )

Prawda że proste?

Wytrzymałość – uogólnione prawo Hooke’a – ponownie podstawy

 Ten temat mieści się pośrednio w temacie rozciągania, ponieważ prawo Hooke’a słusznie kojarzone z wydłużeniem pręta:

 

                               siła * długość pręta

wydłużenie = ———————————————–

    moduł Younga * pole przekroju

 

dotyczy zmiany wymiaru w JEDNYM kierunku – długości.

Przy drobnej modyfikacji powyższego prostego wzoru można nim opisać zmianę wymiarów elementu odkształcalnego w 3 prostopadłych kierunkach.

A tak mówiąc prostymi słowami to jak weźmiemy kawałek plasteliny, położymy na stole i naciśniemy na nią, to ona się spłaszczy, ale jednocześnie rozejdzie się na boki. Czyli zmniejszy się jej wysokość, ale zwiększy szerokość i długość. To teraz weźmy ponownie prawo Hooke’a:

 

S * L

L    =   ————————–

E * F

 

Jak podzielimy obie strony przez L:

 

L              S

 = ———–

L                 E * F

I teraz można zapisać L/L jako wydłużenie względne:

L/L =

i wstawić do równania powyżej:

 

S

= ————–

E * F

 

I można przypomnieć że siła podzielona przez przekrój daje naprężenie:

S/F =

I ponownie wprowadzamy to do równania powyżej (prawa Hooke’a):

= / E

I to co dostaliśmy to dalej dotyczy JEDNOKIERUNKOWEGO stanu naprężenia czyli na przykład rozciągania pręta. A teraz jak to będzie wyglądało dla naciskania i rozpłaszczania kawałka plasteliny czyli TRÓJKIERUNKOWEGO stanu naprężenia:

x = x/E – *y/E – *z/E

I to dotyczy osi x i prostopadłych do niej z oraz y. Pierwszy składnik jest identyczny jak dla JEDNOKIERUNKOWEGO stanu naprężenia. Drugi i trzeci składnik poprzedzony MINUSEM dotyczy odkształceń w kierunkach prostopadłych do osi x (i dlatego tu jest minus, bo jak ściśniemy plastelinę, to ona się spłaszczy-zmniejszy się wymiar i jednocześnie rozejdzie na boki-2 prostopadłe wymiary się zwiększą).  I tu się pojawia tajemnicze oznaczenie:

– stała Poissona

i to jest taka liczba, inna dla każdego materiału, która opisuje ile dany materiał rozpłaszczy się na boki, jak go naciśniemy z góry (stąd ten przykład z rozgniataniem kawałka plasteliny). Analogiczna sytuacja wystapi dla 2 pozostałych osi:

y = y/E – *x/E – *z/E

z = z/E – *x/E – *y/E

Następnym razem zrobimy proste zadanie z tego tematu.

Wytrzymałość-rozciąganie-zadanie 9

Mamy kolejne trudniejsze zadanie z rozciągania

rozciaganie2

To teraz trzeba jasno powiedzieć, jak to działa:
Pozioma sztywna belka (to poziome najgrubsze od punktu A do punktu B) ma oś obrotu w połowie długości w punkcie O (podpora PRZEGUBOWA STAŁA). Do obu końców belki w punktach A i B przymocowano 2 PRĘTY ( na przykład cienkie druty). Lewa linka leci pionowo do samej ziemi i tam jest przymocowana. Prawa linka idzie pod kątem 60 stopni do poziomu i też jest przymocowana do ziemi. Tylko jak dobrze widać, to prawa linka jest dłuższa, bo leci pod kątem. I do belki sztywnej przyłożono moment M, czyli ktoś próbuje kręcić belką przeciwnie do wskazówek zegara. I tu trzeba położyć akcent na PRÓBUJE KRĘCIĆ ponieważ te 2 cięgna nie pozwalają i utrzymują belkę prawie że w poziomie. A dlaczego prawie:
Ponieważ zgodnie z prawem Hooke’a cięgna trochę zmienią długość i belka MINIMALNIE odchyli się od poziomu.

Jak wiadomo, jak to wszystko działa, to uwalniamy belkę sztywną od więzów, czyli zastępujemy cięgna i podporę przegubową siłami:

rozciaganie3

W podporze są dwie reakcje bo jest to podpora PRZEGUBOWA STAŁA.
Piszemy równania równowagi, a będą ich TRZY, ponieważ jest to układ sił PŁASKI ROZBIEŻNY (rozbieżny bo wszystkie siły nie zbiegają się w jednym punkcie)
ΣPix = Rx + S2*cos60stopni = 0 [1]
ΣPiy = (-S1) – Ry – S2*sin60stopni = 0 [2]
ΣMio = M + S1*l – S2*sin60stopni * l = 0 [3]
Jak widać są trzy równania i cztery niewiadome – a więc mamy zadanie STATYCZNIE NIEWYZNACZALNE. Potrzebne jest kolejne równanie, w tym przypadku przeprowadzimy analizę odkształceń.

rozciaganie4

Rysujemy sobie belkę w 2 położeniach:
– przed odkształceniem – to jest to poziome zaczynające się w punkcie A przechodzące przez O i dochodzące do B
– po odkształceniu – to co jest pod kątem i przechodzi przez punkt O

W tym miejscu należy postawić dwa założenia:
– po pierwsze punkt A nie porusza się po łuku tylko po prostej AA’ (i tak samo jest z punktem B)
– po drugie kąt pręta 2 (tego prawego) do poziomu nie zmienia się po odkształceniu – jak było 60° do poziomu, tak również jest 60° do poziomu po odkształceniu – i to jak widać powyżej, widzimy 2 równoległe pręty – pręt przed odkształceniem i pręt po odkształceniu

Z twierdzenia Talesa:

l          l
—- = ——-
Δl1    BB’

Z trójkąta BB’C:

sin60° =  Δl2 / BB’

BB’ = Δl2 / sin60°

Wprowadzając do równania z twierdzenia Talesa:

l                  l
—– = ——————
Δl1       Δl2/sin60°

Jeżeli ułamki są równe to ich mianowniki też są równe:
Δl1 = Δl2/sin60°

Zmiany długości prętów Δl1 i Δl2 obliczamy z prawa Hooke’a:

          S1 * l
Δl1 = ———-
E * F

         S2 * l2
Δl2 = ————
E * F

gdzie: l2- długość pręta 2

sin60° = l / l2

l2 = l / sin60°

     S2 * l
Δl2 = ——————-
E*F*sin60°

Wracając do twierdzenia Talesa:

S1*l            S2 * l
——– = ——————-
E*F         E*F*sin60°

Dzielimy obie strony powyższego równania przez l i mnożymy przez (E*F)
S1 = S2/ sin60°

Powstało [4] równanie obok [1] [2] i [3] i można obliczyć wszystkie niewiadome S1 , S2 , Rx , Ry.

Rx + S2 * cos60° = 0 [1]
(-S1) – Ry – S2 * sin60° = 0 [2]
M + S1*l – S2*sin60° * l = 0 [3]
sin60° * S1 = S2 [4]

Wstawiamy równanie [4] do [3]:
M + S1*l – sin60° * S1*sin60° * l = 0 [3]
M + S1*l*(1-sin60°) = 0 [3]
M = S1*l*(sin60° – 1) = S1 * l * ( -0,25 ) [3]
Z tego obliczymy siłę w lewym pręcie:
S1 = (-4*M) : l
I na koniec z równania [3] obliczymy siłę w prawym skośnym pręcie:
M + S1*l = S2*sin60°*l
S2 = M : ( l*sin60° ) + S1: ( sin60° ) =
= M : ( l*sin60° ) + (-4*M) : ( l * sin60° ) = (-3*M) : ( l*sin60° )=
= (-3,5*M) : l

Wytrzymałość-rozciąganie-zadanie 5

Poprzednio rozpoczęliśmy podstawy wytrzymałości a teraz może zadanie z rozciągania:

rozciaganie1

  Mamy dane przekroje pręta A, moduł Younga E, siłę P i długość l. Pytają się o reakcje utwierdzenia w suficie i podłodze

O co tutaj chodzi? Ktoś wziął pręt o zmiennym przekroju, jednym końcem przyspawał do podłogi, a górnym końcem przyspawał do sufitu. Jak widać na rysunku całą wysokość pręta podzielono na 3 przedziały i na granicy pierwszego i drugiego oraz drugiego i trzeciego przedziału przyłożono siły 4*P oraz P.

Po pierwsze uwalniamy słup od więzów, czyli zastępujemy sufit i podłogę siłami utwierdzenia obojętnie w którą stronę, ale później się tego trzymamy.

Gdy są już reakcje utwierdzenia to można napisać sumę rzutów sił na oś y, która leży w pionie (w osi słupa):

Piy = P + S1 – 4*P – S2 = 0

Przyjmujemy że siła do góry jest z PLUSEM a siła w dół jest z MINUSEM. Potem można powyższe równanie uprościć i dostaniemy to co poniżej:

Piy = S1 – 3*P – S2 = 0 (1)

W tym równaniu są 2 niewiadome: S1 i S2. Aby je obliczyć musi być kolejne równanie. Tym razem GEOMETRYCZNE mówiące, że

suma wydłużeń poszczególnych odcinków (a są trzy i każdy o długości l) musi być równa ZERO.

To jest tak, że jak pierwszy odcinek wydłuży się o 1mm, drugi odcinek wydłuży się o 2mm, to trzeci odcinek skróci się o 3mm.A to dlatego że odległość między podłogą i sufitem zawsze będzie 3*l:

l1 + l2 + l3 = 0

gdzie l to poszczególne wydłużenia poszczególnych odcinków

Teraz trzeba użyć prawa Hooke’a które mówi:

siła * długość pręta

wydłużenie      =    ————————————————————————–

moduł Younga * pole przekroju

Ponieważ mamy 3 przedziały, to w każdym z nich musimy określić siłę rozciągającą czyli siłę normalną. Żeby sobie ułatwić to można użyć kawałka kartki, którym będziemy zakrywać część słupa.

Dla pierwszego przedziału (patrząc od góry) zakrywamy tak, żeby widzieć kawałek tego pierwszego przedziału. Teraz przepisujemy siły, które widzimy – no i widzimy S1:

N1 = S1

Następnie odsłaniamy trochę więcej słupa w taki sposób, żeby widzieć pierwszy przedział (licząc od góry) i kawałek drugiego przedziału. I oto co widzimy:

N2 = S1 – 4*P

W kolejnym kroku odsłaniamy jeszcze więcej słupa, tak żeby całkowicie widzieć pierwszy i drugi przedział (licząc od góry) oraz kawałek trzeciego. Siły normalne w trzecim przedziale:

N3 = S1 – 4*P + P = S1 – 3*P

Teraz już mając siły w poszczególnych przedziałach (N), długości tych przedziałów (l), moduł Younga (E) oraz przekroje (A) w każdym z przedziałów można to wszystko wstawić do prawa Hooke i równania geometrycznego:

N1*l             N2*l              N3*l

———- + ————– + ————- = 0

E*2*A         E*2*A            E*A

Po wstawieniu wartości sił normalnych wyjdzie coś takiego:

S1*l            (S1-4*P)*l            (S1-3*P)*l

———- + ——————– + ——————– = 0

E*2*A              E*2*A                   E*A

Teraz dobrze będzie to wszystko uprościć, czyli mnożymy obie strony przez (E*A) i dzielimy przez l:

S1             (S1-4*P)        S1-3*P

—– + —————— + —————- = 0 (2)

2                   2                    1

Z tego wszystkiego można wyciągnąć reakcję utwierdzenia S1:

2*S1 = 5*P

S1 = 2,5*P

Reakcję S1 wstawiamy do sumy rzutów na oś y i obliczamy z tego S2:

S1 – 3*P – S2 = 0

S1 – 3*P = S2

S2 = 2,5*P – 3*P = (-0,5*P)

Reakcje utwierdzenia wynoszą: S1 = 2,5*P oraz S2 = (-0,5*P).

 

Wytrzymałość materiałów-ponownie podstawy

Nie tak dawno omawialiśmy podstawy mechaniki, a teraz dobrze będzie płynnie przejść do wytrzymałości materiałów, gdzie wiedza z mechaniki bardzo się przyda.

Wytrzymałość wcale nie jest tak skomplikowana jak niektórzy ją malują i zajmuje się:

–  siłami działającymi na ciała

– i wywołanymi tym naprężeniami i odkształceniami.

Można tę wiedzę podzielić na kilka prostych rozdziałów:

– rozciąganie

– zginanie

– skręcanie

– ścinanie

Z ROZCIĄGANIEM jest bardzo prosto, bo to jest tak jakbyśmy złapali za 2 końce sznurka (albo jeszcze lepiej gumy) i próbowali go rozerwać. I zanim się uda go rozerwać to na początku delikatnie się rozciągnie, chociaż może na oko tego nie widać (albo widać jeżeli weźmiemy gumę).

I tu dochodzimy do bardzo ważnego prawa HOOKE’a , które opisuje:

O ILE ROZCIĄGNIE SIĘ COŚ POD WPŁYWEM SIŁY ROZCIĄGAJĄCEJ S.

To o ile się rozciągnie nazywają wydłużeniem. W najprostszym ujęciu wydłużenie jest równe:

 

                  S * L

l  =  —————-

          E * A

 

gdzie:

L – długość sznurka albo gumy lub pręta

E – moduł Younga

A – przekrój poprzeczny

Długość sznurka nie wymaga komentarza ale należy powiedzieć słowo o module Younga, który opisuje sprężystość materiału. Jeden materiał można łatwo rozciągać (jak na przykład guma), a inny materiał nie bardzo się nadaje do rozciągania – na przykład beton. No i na końcu mamy przekrój poprzeczny czyli pole przekroju.

To tyle wstępu na temat ROZCIĄGANIA a następnym razem zrobimy jakieś proste zadanie, żeby to jeszcze lepiej zrozumieć.