2 rodzaje energii mechanicznej i zasada zachowania energii

Cześć wszystkim i dzisiaj opowiemy coś o zasadzie zachowania energii mechanicznej. Na świecie występują różne rodzaje energii i na co dzień z tym się stykamy, na przykład
– energia chemiczna
– energia cieplna
– energia elektryczna
– energia mechaniczna
i temat tej ostatniej energii dzisiaj rozwiniemy.
Energia mechaniczna występuje na przykład pod postacią

ENERGII KINETYCZNEJ i POTENCJALNEJ.

I teraz małe przypomnienie energii kinetycznej:

Ek = 0,5 * m * V²

która zależy od masy ciała m i kwadratu jego prędkości V. O energii kinetycznej już kiedyś pisałem na tym blogu

Dynamika – praca i energia – zadanie 30

a teraz o

ENERGII POTENCJALNEJ:

Energia potencjalna wiąże się z polem potencjalnym (na przykład polem grawitacyjnym) i możliwością wykonania pracy w tym polu. Zależy ona od masy oraz wysokości położenia ciała h i wynosi:

Ep = m * g * h

gdzie g oznacza przyspieszenie ziemskie i jest w przybliżeniu wartością stałą.

Jeżeli przypomnieliśmy rodzaje energii jakie występują to teraz:

ZASADA ZACHOWANIA ENERGII MECHANICZNEJ

oznacza, że suma energii potencjalnej i kinetycznej zawsze będzie stała (jeżeli pominiemy opory ruchu):

Ep + Ek = const

To było trochę zbyt naukowe, a teraz coś z życia:

Wyrzucamy z okna przedmiot i w chwili wyrzucania prędkość będzie równa ZERO (bo jeszcze nie zaczął się rozpędzać – ENERGIA KINETYCZNA równa się ZERO). Wtedy też ENERGIA POTENCJALNA jest maksymalna.

Przedmiot zaczyna swobodnie spadać w dół.
Zwiększa swoją prędkość, rośnie ENERGIA KINETYCZNA
i jednocześnie
spada ENERGIA POTENCJALNA.

Tuż przed zderzeniem z ziemią
ENERGIA POTENCJALNA spada do ZERA
a ENERGIA KINETYCZNA osiąga maksimum.

Na poniższym szkicu widzimy ilustrację opisanego zjawiska.

zasadazachowaniaenergii1 - 2 rodzaje energii mechanicznej i zasada zachowania energii

Powtórzmy to jeszcze raz głośno:
zgodnie z zasadą zachowania energii
ENERGIA POTENCJALNA
w całości zmieniła się w
ENERGIĘ KINETYCZNĄ

Zmiana ENERGII POTENCJALNEJ będzie równa zmianie ENERGII KINETYCZNEJ.

Prawda że łatwe?

Pęd i zasada zachowania pędu

Witam wszystkich i dzisiaj będzie o czymś nowym a mianowicie opowiemy, co to jest

PĘD

Wiąże się on z dynamiką, ponieważ ma na niego wpływ ruch ciała i masa ciała.

Każdy może tego doświadczyć że jeżeli coś ciężkiego spada, to może zrobić większą szkodę, ponieważ duża masa pomnożona przez prędkość jest dużą liczbą (duży pęd).

Podobnie kula karabinowa która nie ma ogromnej masy, ale jeżeli zostanie wystrzelona z ogromną prędkością to wynik mnożenia – pęd czyli masa razy prędkość – jest bardzo duży i sieje zniszczenie.

To teraz jeden prosty wzór i wszystko za chwilę będzie jasne –

PĘD jest iloczynem

MASY ciała

i jego PRĘDKOŚCI:

p = m * V

Już wiesz czym jest pęd, to teraz

ZASADA ZACHOWANIA PĘDU

Na początek sucha definicja:

Jeżeli na układ ciał nie działają żadne siły zewnętrzne, lub siły działające się równoważą,

to

pęd układu nie zmienia się.

 

A tak prostymi słowami i na przykładzie:

Wyobraź sobie zamknięty układ w postaci dwóch kulek z plasteliny, z których każda ma masę m:

Jedna z kulek stoi nieruchomo, a druga leci poziomo z prędkością V1. Pęd ruchomej kulki wynosi:

m * V1

Pęd nieruchomej kulki wynosi ZERO (bo jej prędkość wynosi ZERO)

Za chwilę ruchoma kulka uderza w nieruchomą.

PO ZDERZENIU

obie kulki sklejają się (bo obie są z plasteliny) i lecą razem z prędkością V2.

PED1 1024x252 - Pęd i zasada zachowania pędu

Na powyższym szkicu widzimy sytuację PRZED ZDERZENIEM (po lewej) oraz PO ZDERZENIU (po prawej). PO ZDERZENIU pęd całego układu wynosi:- Pęd i zasada zachowania pędu

(m + m) * V2

Zgodnie z wcześniej przytoczoną zasadą zachowania pędu:

PĘD PRZED ZDERZENIEM = PĘD PO ZDERZENIU

czyli na wzorach to będzie:

m * V1 + m * 0 = (m + m) * V2

Przypominam , że ZERO po lewej stronie równania oznacza, że nieruchoma kulka miała prędkość równą ZERO (to jest oczywiste, ale lepiej przypomnieć dla jasności) .

Prawda że łatwe?

Równia pochyła i tarcie – zadanie 47

Witam wszystkich i dzisiaj zrobimy zadanie z tarciem i równią pochyłą.
tarcie1 - Równia pochyła i tarcie - zadanie 47
Na równi pochyłej leży klocek o masie 2*m a za nim opierają się o niego dwa klocki (o masie m) leżące jeden na drugim i jest dany współczynnik tarcia między klockami oraz równią . Ten co wymyślił zadanie, zadaje pytanie:

JAKI MOŻE BYĆ MAKSYMALNY KĄT α, ŻEBY TO WSZYSTKO POZOSTAŁO NIERUCHOME

Łatwo sobie wyobrazić, że jeżeli kąt równi będzie za duży, to wszystko zjedzie na dół.
To co widzimy na obrazku, to jest

UKŁAD ZŁOŻONY

czyli w tym przypadku:

-duży klocek

-i dwa małe klocki.

Wobec tego przechodzimy do

KROKU PIERWSZEGO

Rozkładamy układ złożony na

UKŁADY PROSTE:

duży klocek
mały klocek
– drugi mały klocek

Rysujemy duży klocek i uwalniany od więzów
tarcie2 - Równia pochyła i tarcie - zadanie 47
czyli rysujemy siły pochodzące od:
– ciężaru
– nacisków dwóch mniejszych klocków które go naciskają
– nacisku i tarcia od równi na której klocek stoi.

Łatwo zauważyć że jest to układ sił płaski zbieżny, a więc można napisać 2 równania równowagi:

– suma rzutów sił na oś x
– suma rzutów sił na oś y

https://blog-student.com/statyka-sciaga-podstawy/
Klocek i cała równia lecą pod kątem i dlatego obrócimy układ współrzędnych o kąt α:
I teraz równania równowagi:
ΣPix = m*N1 – N2 – N3 – 2*m*g*sinα = 0 [1]
ΣPiy = N1 – 2*m*g*cosα = 0 [2]

Duży klocek został uwolniony od więzów i równania napisane, to teraz analogicznie działamy z małym górnym klockiem:
tarcie3 - Równia pochyła i tarcie - zadanie 47
Tutaj podobnie obrócimy układ współrzędnych i napiszemy równania równowagi statycznej:
ΣPix = m*N4 + N2 – m*g*sinα = 0 [3]
ΣPiy = N4 – m*g*cosα = 0 [4]

Analogicznie rozwiążemy temat małego dolnego klocka:

tarcie4 - Równia pochyła i tarcie - zadanie 47
ΣPix = m*N5 – m*N4 + N3 – m*g*sinα = 0 [5]
ΣPiy = N5 – N4 – m*g*cosα = 0 [6]

W DRUGIM KROKU

obliczymy szukany kąt α równi z powyższych sześciu równań statycznych.

Dodajemy stronami równania [4] i [6] :
N4 – m*g*cosα + N5 – N4 – m*g*cosα= 0
(- m)*g*cosα + N5 – m*g*cosα= 0
Nacisk pomiędzy dolnym małym klockiem a równią:
N5 = 2*m*g*cosα

Z równania [4] obliczymy nacisk między dwoma małymi klockami:
N4 = m*g*cosα

Z równania [2] wynika nacisk równi na duży klocek:
N1 = 2*m*g*cosα

Z równania [5] :
μ*2*m*g*cosα – μ*m*g*cosα + N3 – m*g*sinα = 0
μ*m*g*cosα + N3 – m*g*sinα= 0
Nacisk między dużym a małym dolnym klockiem:
N3 = m*g*sinα – μ*m*g*cosα

Z równania [1] :
μ*N1 – N2 – N3 – 2*m*g*sinα = 0
μ*2*m*g*cosα – (m*g*sinα – μ*m*g*cosα ) – 2*m*g*sinα = N2
μ*2*m*g*cosα – m*g*sinα + μ*m*g*cosα – 2*m*g*sinα = N2
Nacisk między dużym a małym górnym klockiem:
N2 = μ*3*m*g*cosα – 3*m*g*sinα

Wszystko co udało się obliczyć wstawiamy do równania [3]:
μ*m*g*cosα + μ*3*m*g*cosα – 3*m*g*sinα – m*g*sinα = 0
μ*4*m*g*cosα – 4*m*g*sinα = 0
μ*4*m*g*cosα = 4*m*g*sinα
μ*cosα = sinα
Dzielimy obie strony równania przez cosα:
tgα = μ
Wobec tego szukany kąt, żeby te wszystkie klocki nie zjechały na dół wynosi:
α = arctg μ

Prawda że łatwe?

Prędkość i przyspieszenie w ruchu płaskim – zadanie 44

Witam wszystkich i dzisiaj obliczymy prędkość i przyspieszenie w ruchu płaskim. Niedawno coś omawialiśmy z ruchu płaskiego,

https://blog-student.com/kinematyka-zadanie-3-obliczenie-przyspieszenia-w-ruchu-plaskim/

a dzisiaj mamy takie zadanie:ruchplaski1 - Prędkość i przyspieszenie w ruchu płaskim - zadanie 44
Pierścień toczy się wewnętrzną powierzchnią po powierzchni nieruchomego walca. W punkcie S znajduje się chwilowy środek obrotu. Toczenie bez poślizgu odbywa się z prędkością kątową ω. Średnica nieruchomego walca równa się r. Średnice wewnętrzna i zewnętrzna pierścienia wynoszą odpowiednio 2*r oraz 3*r. Oto jakie jest pytanie

OBLICZ PRĘDKOŚĆ I PRZYSPIESZENIE PUNKTU A

Jeżeli w punkcie S mamy chwilowy środek obrotu,to tym prościej będzie obliczyć prędkość punktu A – obliczymy ją właśnie

METODĄ CHWILOWEGO ŚRODKA OBROTU.

Idąc tą drogą prędkość jest iloczynem

prędkości kątowej pierścienia
oraz
odległości punktu A od chwilowego środka obrotu:
VA = ω * SA

Temat prędkości zamknięty czyli przechodzimy do przyspieszeń – tę sprawę załatwimy

METODĄ BIEGUNA.

Przypomnijmy, że

biegun

jest takim punktem charakterystycznym (ciała poruszającego się), którego ruch można łatwo opisać.
Tutaj za biegun obierzemy środek pierścienia ponieważ
– jest on punktem charakterystycznym
– jest oddalony od chwilowego środka obrotu o znaną odległość i ta odległość wynosi 2*r

Wobec tego przyspieszenie punktu A jest sumą wektorów:
– przyspieszenia bieguna czyli punktu O
– oraz przyspieszenia punktu A względem bieguna
__    __       ___
pA  =  pO  +  pA/O

Każdy z powyższych dwóch wektorów MOŻE ale nie musi składać się z dwóch składowych:
– stycznej
– i normalnej
__    ___    ___    ___        ____
pA  =  pOt  +  pOn  +  pA/Ot  +  pA/On

Prędkość kątowa pierścienia jest stała, a więc przyspieszenie styczne bieguna jest równe zero (prędkość liniowa bieguna nie zmienia się)
pOt = 0

Podobnie przyspieszenie styczne punktu A względem bieguna równa się zero – również prędkość liniowa punktu A względem bieguna nie zmienia się:
pA/Ot = 0

Jeżeli dwa składniki przyspieszenia punktu A równają się zero, to całe przyspieszenie:
__ ____ ____
pA = pOn + pA/On

Teraz obliczymy obie składowe przyspieszenia:
Przyspieszenie normalne bieguna jest iloczynem
prędkości kątowej pierścienia
oraz
odległości bieguna od chwilowego środka obrotu
pOn = ω * 2 * r

Przyspieszenie normalne punktu A względem bieguna równa się iloczynowi
prędkości kątowej pierścienia
oraz
odległości punktu A względem bieguna
pA/On = ω * 3 * r
Jak już obliczyliśmy składowe przyspieszenia, to dobrze będzie te dwa wektory narysować
ruchplaski2 - Prędkość i przyspieszenie w ruchu płaskim - zadanie 44
i już można je zsumować , żeby otrzymać przyspieszenie punktu A. Ponieważ oba wektory są prostopadłe do siebie , to dodamy je

METODĄ RÓWNOLEGŁOBOKU:
pA = √(pOn² + pA/On²) = √[(ω*2*r)²+(ω*3*r)²] = ω*r *√13
Prawda że łatwe?

Kratownica przestrzenna – zadanie 42

Witam ponownie i dzisiaj zajmiemy się kratownicą przestrzenną. Nie tak dawno było coś o kratownicach płaskich i tutaj sposób postępowania będzie analogiczny. Tak samo mamy pręty połączone przegubowo i tak samo kratownica jest w określony sposób obciążona. Różnica polega na umieszczeniu prętów w przestrzeni (zamiast na płaszczyźnie).
A więc mamy taką oto kratownicę:

kratownica1 - Kratownica przestrzenna - zadanie 42
i autor zadania zadaje pytanie

OBLICZ SIŁY W PRĘTACH

Po pierwsze  uwalniamy od więzów kratownicę jako CAŁOŚĆ czyli zastępujemy podpory siłami.

Chodzi oczywiście chodzi tutaj o podpory, którymi kratownica łączy się ze światem zewnętrznym czyli podłożem. Łatwo zobaczyć że kratownicę przymocowano do podłoża trzema podporami przesuwnymi oraz jedną stałą.
Zamiast podpory przesuwnej dajemy JEDNĄ REAKCJĘ (prostopadłą do powierzchni do której podpora jest zamocowana).

Zamiast podpory stałej dajemy REAKCJE PROSTOPADŁE WZDŁUŻ KAŻDEJ OSI.

kratownica2 - Kratownica przestrzenna - zadanie 42

Po drugie piszemy równania równowagi statycznej dla kratownicy jako całości:
∑Pix = RBx + RD – F = 0
∑Piy = RBy = 0
∑Piz = (-RA) – RC – RBz = 0
∑Mix = RC * a = 0 ==> RC=0
∑Miy = F * a – RBz * a = 0
∑Miz = RBy * a + RD * a = 0

Jak widać z powyższych równań, dwie reakcje już mamy obliczone. Z ostatniego równania obliczymy reakcję w podporze D:
RBy + RD = 0
RD = (-RBy) = 0

Z przedostatniego równania obliczymy pionową reakcję w podporze B:
F * a = RBz * a
RBz = F

Z trzeciego równania obliczymy reakcję w podporze A:
RA = (-RC) – RBz = 0 – F = (-F)

Z pierwszego równania obliczymy poziomą reakcję w podporze B:
RBx = (-RD) + F = 0 + F = F

Po trzecie numerujemy wszystkie pręty po kolei od 1 do 9, bo tyle ich jest.

KRATOWNICA3 - Kratownica przestrzenna - zadanie 42

Po czwarte mając obliczone wszystkie reakcje podpór obliczymy reakcje w prętach metodą RÓWNOWAŻENIA WĘZŁÓW.

Na początek wybieramy taki węzeł, z którego wychodzą TRZY pręty, ponieważ dla jednego węzła możemy napisać TRZY równania równowagi statycznej:
– suma rzutów sił na oś x
– suma rzutów sił na oś y
– suma rzutów sił na oś z
ponieważ każdy oddzielny węzeł jest PRZESTRZENNYM ZBIEŻNYM układem sił (wszystkie siły wychodzące z węzła zbiegają się w jednym punkcie).

kratownica4 - Kratownica przestrzenna - zadanie 42

Wobec tego co powyżej wybieramy
wezeł B
i na początek i piszemy równania równowagi:
∑Pix = RBx – S1 – S7 * cos45° = 0
∑Piy = RBy – S2 = 0
∑Piz = S7 * sin45° – RBz = 0

Korzystając z wcześniej obliczonych reakcji:
RBy = 0, RBz = F, RBx = F
z drugiego równania obliczamy siłę w pręcie nr 2:
S2 = RBy = 0
z trzeciego równania obliczymy siłę w pręcie nr 7:
S7 * sin45° = RBz
S7 * sin45° = F
S7 = F : sin45°
Z pierwszego równania obliczymy siłę w pręcie nr 1
S1 = RBx – S7 * cos45° = F – F : sin45° * cos45° =
= F – F = 0

Analogiczne podejście do
węzła A:
∑Pix = S1 + S4 * cos45° = 0
∑Piy = S3 + S4 * sin45° = 0
∑Piz = S6 – RA = 0

Z pierwszego równania:
(-S1) = S4 * cos45°
S4 = (-S1) : cos45° = 0 : cos45° = 0

Z drugiego równania:
S3 = (-S4) * sin45° = 0 * sin45° = 0

Z trzeciego równania:
S6 = RA = (-F)

Kolejno przechodzimy do
węzła C
w którym mamy tylko dwie niewiadome
∑Pix = S5 = 0
∑Piy = S3 + S8 * sin45° = 0
i dlatego nie napiszemy sumy rzutów sił na oś z. Z drugiego równania obliczymy siłę w pręcie nr 8.
(-S3) = S8 * sin45°
S8 = (-S3) : sin45°= 0 : sin45° = 0

Pozostało obliczyć siłę w pręcie nr 9 i zrobimy to przy użyciu
węzła D
pisząc tylko jedno równanie równowagi:
∑Piy = (-S2) – S4 * cos45° – S9 * cosβ * cos45° = 0
(-S2) – S4 * cos45° = S9 * cosβ * cos45°
(-S2):cos45° – S4 = S9 * cosβ
S9 = (-S2):(cos45°*cosβ) – S4:cosβ
Tutaj pojawia się kąt β zawarty pomiędzy podstawa sześcianu (w którym mieści się kratownica) a prętem nr 9. Znając przekątną
sześcianu ( √2 * a ) i jego wysokość
(a) policzymy ten kąt z funkcji arcustangens:
β = arctg [a : (a*√2)] = 35°
W związku z tym siła w pręcie nr 9 wyniesie:
S9 = (-S2):(cos45°*cosβ) – S4:cosβ =
= 0 : (cos45°*cosβ) – 0:cosβ = 0

W ten sposób obliczyliśmy wszystkie siły w prętach. Prawda że łatwe?