Twierdzenie Steinera – podstawy

Witam wszystkich i dzisiaj będzie o twierdzeniu Steinera i już mówię, co to oznacza. Wielokrotnie w mechanice i wytrzymałości spotykamy się z przekrojami na przykład z przekrojami zginanych belek czy skręcanych wałów. Taki przekrój może być prostokątem, kołem trójkątem lub dowolną kombinacją wymienionych figur. Każdy przekrój posiada środek ciężkości (o czym już było niedawno) oraz moment bezwładności.
To może wystarczy tego wstępu, bo o momencie bezwładności przekroju dzisiaj będzie. Przypomnę, że jest to taka wielkość opisująca figurę, która mówi, w jaki sposób jest ona położona względem osi układu współrzędnych. Jeżeli ta oś przechodzi przez środek ciężkości przekroju to nazywa się OSIĄ CENTRALNĄ. Momenty bezwładności podstawowych figur względem osi centralnych można znaleźć w literaturze i kilka przykładów zamieszczam poniżej
momentbezwladnisci1
Wszystko pięknie tylko często potrzeba obliczyć moment bezwładności przekroju względem osi x równoległej do CENTRALNEJ xc ale NIE PRZECHODZĄCEJ przez środek ciężkości przekroju. I na to gotowych wzorów nie ma, ale z pomocą przychodzi twierdzenie Steinera.
momentbezwladnosci2
Nawiązując do powyższego rysunku mamy dane:
– moment bezwładności przekroju względem osi centralnej Jxc
– pole figury S
– odległość miedzy osią centralna xc a równoległą do niej osią x którą oznaczono a .
I teraz uwaga:
Moment bezwładności względem osi x wyniesie:

J = Jxc + S * a²

Prawda że łatwe?

Private: Dynamika – regulator – zadanie 33

Mamy taki regulator, w którym belkę o masie m przymocowano przegubowo w 2/3 długości od dołu do wału.
dynamika12
Wał obraca się z prędkością kątową ω . Autor zadaje pytanie:

O JAKI KĄT α ODCHYLI SIĘ  BELKA?

Po pierwsze
Całość uwalniamy od więzów czyli:
– zastępujemy przegub dwiema prostopadłymi reakcjami
– przykładamy ciężar do belki
– ponieważ całość obraca się, to do belki przykładamy siły odśrodkowe bezwładności

dynamika13

Po drugie
Piszemy równania równowagi, a ponieważ jest to układ PŁASKI ROZBIEŻNY, to piszemy TRZY równania równowagi:
∑Pix = ∫dB –  ∫dB2 – Rx = 0 [1]
∑Piy = Ry – m*g = 0 [2]
∑Mio = ∫dB*x*cosα – m*g*L/6*sinα + ∫dB2*x2*cosα = 0 [3]

Po trzecie
W powyższych równaniach pojawiła się całka i teraz warto ją do końca policzyć, ale na początek dobrze będzie zająć się elementarną siłą dB czyli siłą odśrodkową bezwładności. To jest taka siła (mała siła), która działa na niewielką cząstkę belki o bardzo niewielkiej masie. Chodzi o to, że jak zsumujemy te wszystkie małe elementarne siły dB, to będziemy mieć sumaryczną siłę odśrodkową działającą na belkę.

dB = dm * ω² * x * sinα
Analogicznie elementarna siła odśrodkowa po krótszej stronie belki wyniesie:
dB2 = dm * ω² * x2 * sinα

Teraz stworzymy zależność która mówi, że

Elementarna masa dm ma się tak do całej masy belki m, jak elementarna długość dx do całkowitej długości L:

dm/m = dx / L

z tego wyciągamy dm:

dm = m * dx / L

i wstawiamy do obliczonych wcześniej elementarnych sił bezwładności:

dB = m/L * ω² * x *sinα* dx

dB2 = m/L * ω² * x2 *sinα* dx

Następnie robimy z tego całki i obliczamy je. Pierwsza całka oznaczona od zera do 2/3*L:
∫m/L*ω²*x*sinα dx = m/L*ω²*sinα*1/2*(2/3*L)²  = m/L*ω² *sinα*1/2*4/9*L²  =
= m*ω² *sinα*2/9*L

I druga całka oznaczona od zera do L/3:
∫m/L*ω² *x2*sinα dx = m/L*ω² *sinα*1/2*(L/2)² = m/L*ω²* sinα*1/2*L² /4 =

= m * ω² * sinα * L/8

Trzecia całka oznaczona od zera do 2/3*L:
∫dB*x*cosα = ∫m/L*ω² *x*sinα*dx*x*cosα = m/L*ω²* sinα*cosα*1/3*(2/3*L)³ =
= m*ω² *sinα*cosα*8/81*L²

Czwarta całka oznaczona od zera do L/3:
∫dB2*x2*cosα = ∫m/L*ω² *x2*sinα*dx*cosα x2 =
= m/L * ω² * sinα * cosα * 1/3 * (L/3)³ = m * ω² * sinα * cosα * L²/81

I teraz można to co wyszło z tych wszystkich całek wstawić do równania momentów:
∑Mio = m * ω² * sinα * cosα * 8/81 * L² – m * g * L/6 * sinα +
+ m * ω² * sinα * cosα * L²/81 = 0 [3]

ω² * cosα* 8/81 * L²  – g*L/6 + ω² * cosα * L²/81 = 0
ω² * cosα* 8/81 * L² + ω² * cosα * L²/81 = g*L/6
ω² * cosα* 9/81 * L² = g*L/6
I jak to sie to uprości to mamy coś takiego
cosα = 1,5 * g : ( ω² * L )
Wobec tego kąt odchylenia belki wyniesie:
a = arccos (1,5 * g : ( ω² * L ) )

Prawda że łatwe?

Statyka – ściąga

Witam ponownie i dzisiaj stworzymy ściągę ze statyki. Tak sobie pomyślałem, że po zamieszczeniu kilkudziesięciu postów dobrze będzie zebrać do kupy to wszystko, co jest potrzebne do zrozumienia podstaw mechaniki oraz zrobienia tych prostych i tych trudniejszych zadań. W pierwszych postach pół roku wcześniej podkreślaliśmy, że najważniejsze są PODSTAWY

Mechanika – pierwsza i trzecia zasada dynamiki Newtona

i jak się je zrozumie to naprawdę niewiele więcej potrzeba, aby tę wiedzę posiąść i umieć zastosować w praktyce.

I tak powstała ściąga albo inaczej mapa myśli i zaczniemy od ściągi z mechaniki – na początek statyka:

sciaga7

 

I oto mamy ściągę ze statyki i tak naprawdę tyle potrzeba żeby temat zrozumieć i zrobić każde zadanie.

Po lewej znalazły się I i III zasady dynamiki Newtona i one są zawsze używane w statyce.

sciaga2

Pośrodku mamy tabele z układami sił i tak naprawdę każde zadanie ze statyki to jest kilka lub więcej sił ułożonych w mniej lub bardziej skomplikowany sposób.

sciaga8

 

Przykładem może być belka już uwolniona od więzów i widać reakcje podpór i parę sił zewnętrznych.

statyka5

W tabeli z różnymi rodzajami układów sił widać 4 różne kombinacje ponieważ już wiemy, że możemy mieć układy sił na płaszczyźnie lub w przestrzeni, a także siły mogą się zbiegać w jednym punkcie (zbieżne) oraz w innym przypadku siły nie będą się zbiegać w jednym punkcie (rozbieżne albo dowolne).

Jeszcze niżej na ściądze mamy 3 różne rodzaje podpór i utwierdzeń, które można spotkać w zadaniach jeżeli uwolnimy dane ciało lub układ od więzów:

sciaga9

– podpora przegubowa przesuwna

– podpora przegubowa stała

– utwierdzenie albo wmurowanie

Jak wiadomo i jak widać na powyższym obrazku zasadniczą sprawą jest różna liczba reakcji przy każdym z 3 przypadków.

Może trudno uwierzyć że to wszystko jest tak proste, ale weźmy pierwsze z brzegu zadanie z układów płaskich. Na tym prostym przykładzie pokażemy, jak łatwo jest poruszać się po temacie

statyka1

Powyżej widzimy, że mamy płaski układ sił i jak uwolnimy od więzów pudło, które leży na równi

statyka2

to widać że siły zbiegają się praktycznie w jednym punkcie i dlatego zgodnie ze ściągą

sciaga5

możemy napisać 2 równania równowagi (sumy rzutów sił na osie x oraz y), które będą zgodne z I zasadą dynamiki, ponieważ siły działające na pudło się równoważą i w związku z tym pudło pozostaje w spoczynku.

Autor zadania podał współczynnik tarcia między pudłem a równią, a więc zgodnie ze ściągą

sciaga6

jeżeli pomiędzy ciałami występuje nacisk i pudło chce zjechać z równi (zamierzony ruch), to wystąpi również siła tarcia.

Poza tym jak widać powyżej, tarcie i nacisk działające na pudło są zwrócone w górę i w lewo. Zgodnie z III zasadą dynamiki Newtona o której również wspomniano na ściądze to samo tarcie i ten sam nacisk również działają na równię pochyłą, ale będą zwrócone w przeciwne strony.

Na tym prostym przykładzie widać jak prosta jest mechanika, jak łatwa jest statyka i nie potrzeba przeczytać wszystkich książek, żeby to ogarnąć.

Statyka – układ przestrzenny – zadanie 31

Jakiś czas temu było zadanie ze statyki z układów płaskich a teraz zrobimy prosty układ przestrzenny.

Jest taka sobie klapa o masie m w kształcie trójkąta równoramiennego ułożyskowana na jednym z boków.
statyka22
Żeby się ta klapa trzymała w pozycji poziomej, to do jednego z wierzchołków przymocowano cięgno. Drugi koniec cięgna zamocowano do pionowej ściany na wysokości h równej długości boku trójkąta. Autor zadaje pytanie:

OBLICZ REAKCJE WIĘZÓW

Jasna sprawa że chodzi o:
– reakcje w łożyskach
– i siłę w cięgnie.

Po pierwsze

Uwalniamy od więzów czyli zastępujemy siłami łożyska i pręt, bo to łączy klapę ze światem zewnętrznym.
statyka23
W lewym łożysku będziemy mieć 3 reakcje ( 2 poprzeczne i jedna wzdłużna) ponieważ jest to łożysko poprzeczno-wzdłużne. W prawym łożysku będą 2 prostopadłe reakcje w poprzek osi obrotu klapy, ponieważ jest to łożysko poprzeczne. Szósta reakcja jest siłą wzdłuż cięgna. Ciężar klapy przykładamy w środku ciężkości trójkąta czyli w 1/3 wysokości od podstawy.

Po drugie

Piszemy równania równowagi. Tutaj można napisać 6 równań ( trzy sumy rzutów sił na osie i trzy sumy momentów wokół osi) ponieważ jest to układ sił:
– przestrzenny
– rozbieżny – bo siły nie zbiegają się w jednym punkcie

Przy okazji warto określić położenie siły S a dokładnie kąt zawarty między siłą S a bokiem trójkąta.
Wiemy że zarówno podstawa jak i wysokość trójkąta mają długość h. Jak podzielimy trójkąt na pół to będziemy mieć 2 jednakowe trójkąty prostokątne.statyka24
Długości przyprostokątnych widzimy na rysunku powyżej a przeciwprostokątną obliczymy z twierdzenia Pitagorasa:
h² + (h/2)² = AC²
AC = √[h² + (h/2)² ] = √ [h² + h² /4 ] = √ [1,25*h² ]  = 1,12 * h

To już zrobione, to teraz trzeba obliczyć kąt między cięgnem-siłą S a obliczoną przeciwprostokątną AC.
statyka25
Jak widać na powyższym rysunku, jest to kąt między przeciwprostokątną klapy a jedną z przyprostokątnych kolejnego trójkąta prostokątnego ale tym razem takiego który jest umieszczony w pionie. Widać również, że mamy długości 2 boków, czyli możemy użyć trygonometrii. Jeżeli w trójkącie prostokątnym mamy kąt i 2 przyprostokątne, to z daleka widać, że to będzie tangens:
tgα = h : (1,12*h) = 0,893
czyli szukany kąt wynosi
α = arctg0,893 = 42°

Kolejna pomocnicza czynność to obliczenie kąta wierzchołkowego klapy w punkcie mocowania cięgna. Tutaj warto wrócić do połowy trójkąta równoramiennego-klapy czyli trójkąta prostokątnego ADC.

statyka26
Na rysunku powyżej oznaczono połowę kąta wierzchołkowego klapy jako β/2. Znamy wszystkie długości boków w trójkącie prostokątnym i jeżeli wiemy że do obliczenia kąta musimy użyć trygonometrii, to możemy użyć dowolnej funkcji. Dla uproszczenia obliczeń użyjemy funkcji tangens:
tgβ/2 = 0,5*h / h = 0,5
β/2 = arctg0,5 = 26,5°
a więc szukany kąt wierzchołkowy trójkąta w punkcie mocowania cięgna wyniesie:
β = 53°
To jak już mamy wszystkie kąty i wzajemne położenie sił działających na klapę, to warto rozłożyć siłę w cięgnie S na dwie składowe, ponieważ nie jest ona równoległa do żadnej osi. Wiadomo tyle, że tworzy ona kąt a z bokiem AC trójkąta, wobec tego rozkładamy ją  na 2 składowe:
– pionową S*sinα
– równoległą do boku trójkąta S*cos α

statyka27

Po trzecie

To teraz piszemy równania równowagi statycznej dla tego układu i dobrze będzie zacząć od sumy momentów:
∑Mix = m*g*h/3 – S*sinα*h=0 [1]
Wiadomo, że siła daje moment względem osi jeżeli:
NIE PRZECINA osi
– lub NIE JEST RÓWNOLEGŁA do osi
Wobec tego moment względem osi x (osi obrotu klapy) dają ciężar m*g i siła w cięgnie S.
Wiadomo również, że:
MOMENT = SIŁA * RAMIĘ
oraz wiadomo również, że siła i ramię muszą być do siebie PROSTOPADŁE.
W nawiązaniu do powyższego równania momentów:
– ciężar m*g działa na ramieniu 1/3 wysokości trójkąta h (bo tutaj jest jego środek ciężkości)
– składowa S*sinα działa na ramieniu h
I tutaj należy podkreślić, że składowa S*cosα nie daje momentu, ponieważ PRZECINA oś x. Jak już to wszystko wiadomo, to lecimy z pozostałymi osiami:
∑Miy = m*g*h/2 – S*sinα*h/2 – RBz*h = 0 [2]
Tutaj należy podkreślić że siły RAz i RAx nie dają momentów, bo przecinają oś y, a siły RAy i RBy też NIE dają momentów, ponieważ są do osi y RÓWNOLEGŁE.
No i została oś z:
∑Miz = RBy * h = 0 [3]
Sumy momentów są zrobione to teraz sumy rzutów sił:
∑Pix = RAx + S*cosα*sin β/2 = 0 [4]
∑Piy = RAy + RBy – S*cosα*cosβ/2 = 0 [5]
∑Piz = RAz + RBz – m*g + S*sinα = 0 [6]

I oto mamy wszystkie równania statyczne dla tego układu. Z powyższych 6 równań można wszystkie reakcje obliczyć. Z równania [1] obliczymy siłę w cięgnie:
m*g*h/3 = S*sinα*h
m*g = S*sinα*3
S = m*g : (3*sinα) = m*g : (3*sin42° ) = 0,5*m*g

Z równania [2] obliczymy reakcję RBz:
m*g*h/2 – S*sinα*h/2 = RBz*h
RBz = m*g/2 – S*sinα/2 = 0,5*m*g – 0,5*m*g*sin21° = 0,32*m*g
Z równania [3] wynika:
RBy = 0

Z równania [4] obliczymy reakcję RAx:
RAx = (-S)*cosα*sinβ/2 = (-m*g / (3*sin α) )*cosα*sinβ/2 =
= (-0,17)*m*g*ctgα*sinβ = (-0,17)*m*g*ctg42°*sin53° =
= (-0,15)*m*g

Z równania [5] obliczymy RAy:
RAy = (-RBy) + S*cosα*cosβ/2 = 0,17*m*g*ctgα*cosβ  =
= 0,17*m*g*ctg42°*cos53°  = 0,11*m*g

Z równania [6]obliczymy reakcję RAz:
RAz = (-RBz) + m*g – S*sinα = (-m)*g/2 + S*sinα/2 + m*g – S*sinα =
= S*(sinα /2-sinα) + 0,5*m*g =
= m*g / (3*sinα)*(sinα/2-sinα) + 0,5*m*g =
= 0,33*m*g * sin21° / sin42° + 0,17*m*g = 0,35*m*g

Prawda że łatwe?

Dynamika – energia – zadanie 30

Dzisiaj zrobimy kolejne i trochę inne zadanie z dynamiki z energii:

Dynamika – energia – zadanie 21

Na rysunku widać że pudło startuje z prędkością początkową i zjeżdża po równi, w drugim etapie jedzie po drodze poziomej i w trzecim etapie wjeżdża po równi. Każdy z 3 odcinków odpowiada drodze s.

dynamika9

Pytanie na jakie szukamy odpowiedzi to:

JAKA MUSI BYĆ PRĘDKOŚĆ POCZĄTKOWA PUDŁA, ŻEBY PRZEJECHAŁO WSZYSTKIE 3 ODCINKI O DŁUGOŚCIACH s?

Po pierwsze

Ustalamy siły zewnętrzne działające na pudło w każdym z 3 odcinków.

dynamika10

Jak widać na pudło działa:

  • ciężar m*g
  • nacisk N1 , N2 lub N3
  • tarcie μ*N1 , μ*N2 lub μ*N3

 

Po drugie

Piszemy równanie mówiące, że

ZMIANA ENERGII KINETYCZNEJ UKŁADU

RÓWNA SIĘ

PRACY WYKONANEJ PRZEZ SIŁY ZEWNĘTRZNE

ΔEk = ∑L

Ponieważ w tym zadaniu mamy 3 odcinki, po których porusza się pudło, to będziemy mieć 3 etapy kiedy praca będzie przechodzić w energię.
dynamika11
Poszczególne odcinki oznaczono na CZERWONO:
1-2 – odcinek pierwszy – zjazd z równi
2-3 – odcinek drugi – ruch po drodze poziomej
3-4 – odcinek trzeci – wjazd na równię

Kolejno dla poszczególnych odcinków równoważność pracy i zmiany energii:

Ek2 – Ek1 = ∑L1-2
Ek3 – Ek2 = ∑L2-3
Ek4 – Ek3 = ∑L3-4

Po trzecie

Energia kinetyczna pudła w punkcie 1 – początek zjazdu z równi:
Ek1 = m * V² / 2

Energia kinetyczna pudła w punkcie 2 – po zjeździe z równi:
Ek2 = m * V2² / 2

Energia kinetyczna pudła w punkcie 3 – na końcu odcinka poziomego:
Ek3 = m * V3² / 2

Energia kinetyczna pudła w punkcie 4 – po wjeździe na równię:
Ek4 = 0

Po czwarte

Suma prac sił zewnętrznych na poszczególnych odcinkach:
Odcinek 1-2 – praca siły tarcia i ciężaru:
∑L1-2 = m*g*s*sinα – N1*m*s

Odcinek 2-3 – praca siły tarcia:
∑L2-3 = (-N2)*m*s

Odcinek 3-4 – praca siły tarcia i ciężaru:
∑L3-4 = (-m)*g*s*sinα – N3*m*s

Na podstawie tego co powyżej powstaną 3 równania równoważności pracy i energii – trzy bo są 3 odcinki ruchu pudła:

Pierwszy odcinek:
m*V2² / 2  – m*V² / 2 = m*g*s*sinα – N1*m*s

Drugi odcinek:
m*V3² / 2 – m*V2² / 2 = (-N2)*m*s

Trzeci odcinek:
0 – m*V3² / 2 = (-m)*g*s*sinα – N3*m*s

Po piąte

W ten sposób powstał układ 3 równań i teraz policzymy niewiadome:
V2 , V , N1 , V3 , N2 , N3
6 niewiadomych i 3 równania czyli potrzeba 3 dodatkowych równań. Najbardziej stosowne będzie obliczenie nacisków N1 , N2 oraz N3 na 3 kolejnych odcinkach.

dynamika10
Pierwszy odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N1:
∑Piy = N1 – m*g*cosα = 0
Nacisk podczas zjazdu z równi:
N1 = m*g*cosα

Drugi odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N2:
∑Piy = N2 – m*g = 0
Nacisk podczas jazdy po drodze poziomej:
N2 = m*g

Trzeci odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N3:
∑Piy = N3 – m*g*cosα = 0
Nacisk podczas wjazdu na równię:
N3 = m*g*cosα

To jak już mamy policzone wszystkie naciski N1 , N2 i N3 to teraz to wstawimy do równań równoważności pracy i energii:
m*V2² / 2 – m*V² / 2 = m*g*s*sinα – m*g*cosα*m*s [1]
m*V3² / 2 – m*V2² / 2 = (-m*g )*m*s [2]
0 – m*V3² / 2 = (-m)*g*s*sinα – m*g*cosα*m*s [3]

Na początek bierzemy równanie [3] i obliczymy z niego prędkość na końcu odcinka poziomego V3:
m*V3² / 2 = m*g*s*sinα + m*g*cosα*m*s
V3² / 2 = g*s*sinα + g*cosα*m * s
V3² = 2*g*s*sina + 2*g*cosα*m*s
V3² = 2*g*s* ( sina + cosα*m )
V3 = √ [2*g*s * ( sina + cosα*m )]

Jak wstawimy V3 do równania [2] to można obliczyć V2:
m*2*g*s* ( sinα + cosα*m ) / 2 – m*V2² / 2 = (-m*g )*m*s
m*2*g*s * ( sinα + cosα*m ) – m*V2² = 2*(-m*g )*m*s
2*g*s * ( sinα + cosα*m ) – V2² = 2*(-g )*m*s
V2² = 2*g*s * ( sinα + cosα*m ) – 2*g*m*s
V2² = 2*g*s * ( sinα + cosα*m – m )
V2  = √ [2 * g * s * ( sinα + cosα*m – m )]

Jak wstawimy V2 do równania [1] to obliczymy szukaną początkową prędkość V:
m*2*g*s * ( sinα + cosα*m – m ) / 2  – m*V² / 2 = m*g*s*sinα – m*g*cosα*m*s

m*2*g*s * ( sinα + cosα*m – m ) – m*V²  = 2*m*g*s*sinα – 2*m*g*cosα*m*s

2*g*s * ( sinα + cosα*m – m ) – V²  = 2*g*s*sinα – 2*g*cosα*m*s

V² = 2*g*s * ( sinα + cosα*m – m ) – 2*g*s*sinα + 2*g*cosα*m*s

V² = 2*g*s * ( sinα + cosα*m – m – sinα + cosα*m )
V² = 2*g*s*m * ( 2*cosα – 1 )

Czyli prędkość początkowa jaką musi mieć pudło, żeby dojechać do punktu 4 wynosi:

V = √[2*g*s*m * ( 2*cosα – 1 )]

Prawda że łatwe ?

Kratownica płaska – metoda przecięć – statyka -zadanie 28

Witam i dzisiaj zrobimy kratownicę płaską metodą przecięć. Niedawno było jedno zadanie z kratownic.

Statyka – kratownica płaska – zadanie 22

Tamto rozwiązaliśmy metodą RÓWNOWAGI WĘZŁÓW, ponieważ chodziło o obliczenie sił we WSZYSTKICH prętach. Jest kolejny sposób na kratownice – METODA PRZECIĘĆ i stosuje się ją wtedy, kiedy mamy obliczyć siłę w jednym lub kilku prętach, które znajdują się w dowolnym miejscu kratownicy. Po takim krótkim wstępie można przejść do zadania:

rozciaganie15

Jak widać jest kratownica i jest takie pytanie

OBLICZYĆ SIŁĘ W 2 PRĘTACH OZNACZONYCH LINIĄ PRZERYWANĄ

Po pierwsze

Uwalniamy kratownicę JAKO CAŁOŚĆ od więzów, żeby obliczyć reakcje podpór.

rozciaganie16

Od razu ważna uwaga:

NIE MUSIMY obliczać reakcji we wszystkich podporach – wystarczy obliczyć reakcję w jednej podporze – w tym przypadku najlepiej RA. W tym celu obliczamy sumę momentów względem punktu B:

MiB = RA * 3 * L + F * 2 * L + F * L = 0

Dzielimy obie strony równania przez L:

RA * 3 + F * 2 + F = 0

RA * 3 + F * 3 = 0

RA + F = 0

Reakcja w lewej podporze:

RA = (-F)

Po drugie

Na wstępie było powiedziane o METODZIE PRZECIĘĆ, a więc teraz przetniemy kratownicę przez te pręty, w których chcemy obliczyć siły.

To tak jakbyśmy ją przecinali na dwie części, ale bardzo ważne żeby przecinać przez MAKSYMALNIE 3 PRĘTY – później okaże się w praktyce dlaczego tak.

rozciaganie17

Powyżej widzimy jedną z możliwości, jak będzie dobrze przeprowadzić linię cięcia – czerwona linia leci przez 2 pręty (w nich obliczymy siły – linia przerywana) i jeszcze jeden, który jest pod nimi.

Po trzecie

Uwalniamy od więzów tę część, która jest na lewo od czerwonej falistej linii – linii cięcia

rozciaganie18

Powyżej widać że mamy płaski ROZBIEŻNY układ sił, czyli możemy napisać 3 równania równowagi. To dlatego chodziło o przecięcie kratownicy maksymalnie przez 3 pręty.

rozciaganie19

Dobrze będzie zacząć od równania momentów względem punktu B (punkt przecięcia sił S2 oraz S3), ponieważ przez ten punkt przechodzą 2 niewiadome siły:

MiB = S1*L + F*L + RA*2*L = 0

S1*L + F*L + (-F)*2*L = 0

Dzielimy obie strony równania przez L:

S1 + F + (-F)*2 = 0

S1 – F = 0

Siła w pręcie nr 1:

S1 = F

Pozostała jeszcze do obliczenia siła S2 i w tym celu warto napisać sumę rzutów sił na oś y:

Piy = RA + F – S2*sin45o = 0

(-F) + F – S2*sin45o = 0

(- S2) * sin45o = 0

A więc siła w pręcie nr 2 wynosi:

S2 = 0

Jak widać dwa równania równowagi dla części kratownicy załatwiły wszystko.

Kratownica płaska – metoda równoważenia węzłów – statyka – zadanie 22

O statyce już było i to nie raz ale teraz zadanie z kratownicy płaskiej i metoda równoważenia węzłów. I na początek warto powiedzieć, co to jest kratownica:

Mówiąc prosto bierzemy kilka lub kilkanaście lub jeszcze więcej prętów i łączymy je przegubowo w taki sposób, że tworzą one sztywny element i przykładem pierwszym z brzegu niech będzie trójkąt stworzony z 3 prętów połączony przegubowo w 3 punktach.

statyka13

Te punkty połączenia dalej będziemy nazywać WĘZŁAMI. Jasna sprawa że większość kratownic to układy prętowe znacznie bardziej skomplikowane niż taki sobie zwykły trójkąt. I teraz może takie proste zadanie:

statyka14

Tak jak widać na rysunku powyżej mamy kratownicę zamocowaną w dwóch podporach (jednej stałej i drugiej przesuwnej) oraz obciążoną dwiema pionowymi siłami F. Autor zadania zadaje proste pytanie:

OBLICZ SIŁY W PRĘTACH

Zrobimy to w kilku prostych krokach metodą RÓWNOWAŻENIA WĘZŁÓW.

 

Po pierwsze

 

Uwalniamy CAŁĄ kratownicę od więzów, czyli zastępujemy siłami to, co ją łączy ze światem zewnętrznym. W tym przypadku kratownica jest mocowana do podłoża dwiema podporami:

– podpora przegubowa stała – zamiast niej rysujemy 2 prostopadłe do siebie reakcje

– podpora przegubowa przesuwna – zastępujemy ją siłą prostopadłą do 2 równoległych kresek

statyka15

Po drugie

 

Piszemy równania równowagi statycznej i teraz spójrzmy jakie widzimy siły:

RA, RBx, RBy oraz 2 siły F i co najważniejsze te siły nie zbiegają się w jednym punkcie, czyli mamy układ PŁASKI ROZBIEŻNY – a więc piszemy 3 równania równowagi (2 sumy rzutów sił i sumę momentów).

Mechanika – statyka – zaczynamy od podstaw

Sumę momentów warto obliczyć względem punktu, przez który przechodzi NAJWIĘCEJ niewiadomych – w tym przypadku będzie to punkt B – RBx oraz RBy

MiB = F * L + F * 2 * L + RA * 3 * L = 0

ponieważ w ten sposób od razu obliczymy reakcję w drugiej podporze:

F * 3 * L + RA * 3 * L = 0

F + RA = 0

która wynosi:

RA = (-F)

Następnie piszemy sumy rzutów sił na osie , z których obliczymy reakcje w podporze B:

Pix = RBx = 0

Piy = (-RA) – F – F – RBy = 0

RBy = (-(-F)) – F – F = (-F)

 

Po trzecie

 

Jak już są obliczone reakcje zewnętrzne działające na kratownicę jako całość, to rozkładamy układ ZŁOŻONY – całą kratownicę na układy PROSTE – poszczególne węzły. W tym celu warto oznaczyć każdy z węzłów literą, a każdy z prętów cyfrą. 

statyka16

UWALNIAMY OD WIĘZÓW każdy węzeł czyli ZASTĘPUJEMY siłami pręty, które do niego dochodzą. Na wstępie możemy zacząć od węzła A, ponieważ dochodzą do niego DWA pręty, czyli w równaniach równowagi będą DWIE niewiadome siły.

statyka17

Jak mamy taki węzeł A uwolniony od więzów, to widać, że wszystkie siły zbiegają się w jednym punkcie, czyli mamy układ PŁASKI ZBIEŻNY – wobec tego piszemy DWA równania równowagi – sumy rzutów sił na osie. I teraz równania równowagi:

Piy = S2 * cos45o – RA = 0

Z pierwszego równania obliczamy siłę w pierwszym pręcie:

S2 * cos45º = RA

S2 = RA : cos45º = (-F) : cos45º = (-1,4*F)

Pix = S1 + S2 * sin45º = 0

S1 = (-S2) * sin45º = (-(-1,4*F)) * sin45º = F

I teraz przechodzimy do węzła C, ponieważ mając siłę w drugim pręcie będziemy mieć 2 niewiadome.

statyka18

Czyli od teraz do samego końca wszystko będzie przebiegać analogicznie:

Pix = S3 – S2 * sin45º = 0

S3 = S2 * sin45º = (-1,4*F) * sin45º = (-F)

Piy = (-S4) – S2 * cos45º = 0

S4 = (-S2) * cos45º = (-(-1,4*F)) * cos45º = F

Analogicznie postępujemy dla pozostałych węzłów:

 

Węzeł D:

statyka19

Piy = S4 – F + S6 * cos45º = 0

(-S4) + F = S6 * cos45º

(-F) + F = S6 * cos45º==> S6 = 0

Pix = S5 – S1 + S6 * sin45º = 0

S5 – F + 0 * sin45º = 0

S5 = F

 

Węzeł E:

Pix = S7 * sin45º – S5 =0

S7 * sin45º = S5

S7 = S5 : sin45º = F : sin45º = 1,4*F

Piy = S7 * cos45º + S8 = 0

S8 = (-S7) * cos45º = (-1,4*F) * cos45º = (-F)

 

Węzeł B:

statyka21

Ostatni węzeł i tu wystarczy suma rzutów sił na oś x, bo pozostała do obliczenia jeszcze jedna siła w pręcie:

Pix = RBx – S9 – S7 * sin45º = 0

0 – S9 – 1,4 * F * sin45º = 0

S9 = (-1,4) * F * sin45º = (-F)

I w taki prosty sposób obliczyliśmy siły we wszystkich prętach metodą równoważenia węzłów.