Napęd na obie osie pojazdu

Cześć wszystkim i dzisiaj udowodnimy, że pojazdy z napędem na obie osie mogą przenieść większą siłę napędową na nawierzchnię niż tradycyjne z napędem na 2 koła. Przypomnijmy, na jakie korzyści eksploatacyjne to się może przełożyć:
– łatwość przejazdu przez teren o dużym współczynniku oporu toczenia (mówiąc prosto chodzi o grząski teren w rodzaju błota, piasku lub innej gliny)
– możliwość ciągnięcia na przykład przyczepy o dużej masie
– osiągnięcie wyższego przyspieszenia na śliskiej nawierzchni

A dlaczego tak się dzieje?

Maksymalna siła napędowa którą koło może przenieść na drogę wynosi:

Fnmax = N * μ1

gdzie:
Fnmax – maksymalna siła napędowa
N – nacisk koła na nawierzchnię
μ1 – współczynnik przyczepności przylgowej czyli mówiąc prosto największy współczynnik tarcia między oponą a drogą

Na dobrą sprawę maksymalna siła napędowa równa się maksymalnej sile tarcia pary opona-jezdnia.
napedna4kola 1024x520 - Napęd na obie osie pojazdu
Spójrz na powyższy szkic obrazujący siły działające na samochód ruszający z miejsca. Oto użyte oznaczenia:
m*g – ciężar pojazdu
Np i Nt – nacisk na osie przednią i tylną
Fnp – siła napędowa na osi przedniej

Gdy przeanalizujemy sobie powyższą sytuację, to widać że całkowita siła napędowa równa się sile napędowej na osi przedniej:

Fn = Fnp = Np * μ1

To był przypadek pojazdu z napędem na jedną oś. A jak będzie wyglądała sytuacja dla układu napędu obu osi pojazdu – będzie podobnie jak poprzednio ale dodatkowo dojdzie siła napędowa kół tylnych:
napedna4kola2 1024x514 - Napęd na obie osie pojazdu
Dodatkowe oznaczenie które tutaj się pojawiło to:
Fnt – siła napędowa kół tylnych

Łatwo zauważysz że w tym przypadku całkowita siła napędowa jest równa sumie sił napędowych obu osi:

Fn4 = Fnp + Fnt = Np * μ1 + Nt * μ1

Porównując oba przypadki (patrząc na oba powyższe równania) zauważysz, że dla przypadku napędu obu osi siła napędowa będzie wyższa – tutaj dodatkowo występuje cząstka Nt*μ1 czyli siła
napędowa kół tylnych.

Prawda że łatwe?

Siła grawitacji – zadanie 56

Wiadomo że Księżyc wykonuje ruch obiegowy wokół Ziemi za sprawą siły grawitacji.

Prawo powszechnego ciążenia i stała grawitacji

Wiesz już, że siła ta zależy od odległości między ciałami posiadającymi masę. Wobec tego poruszając się między Ziemią a Księżycem w stronę naszego satelity siła grawitacji pochodząca od Ziemi spada , a ta pochodząca od Księżyca rośnie. Idąc tą drogą (może bardziej lecąc) napotkamy na punkt w którym

siła grawitacji od Księżyca będzie równa sile grawitacji Ziemi.

W tym zadaniu obliczymy, gdzie dokładnie ten punkt się znajduje. A więc działamy:
Masa mo znajduje się w punkcie, którego szukamy oddalonym o x od Księżyca.

silagrawitacji - Siła grawitacji  - zadanie 56

Logiczne jest, że ten punkt będzie bliższy Księżycowi.

Siła grawitacji pochodząca od Ziemi wyniesie:

Fgz = G * (M*mo) / (L-x)²

gdzie:
G = 6,674 08 * 10-11 m³/(kg*s²) – stała grawitacji
M = 5,9722 * 10 24 kg – masa Ziemi
L = 384 400km = 384 400 000m – odległość Ziemia – Księżyc

Siła grawitacji pochodząca od Księżyca:

Fgk = G * (m*mo) / x²

gdzie:
m = 7,3477 * 10 22 kg – masa Księżyca

Wobec powyższego wiemy, że w szukanym punkcie siły grawitacji od Ziemi i Księżyca zrównają się:

Fgz = Fgk
G * (M*mo) / (L-x)2 = G * (m*mo) / x²

Dzielimy obie strony równania przez stałą grawitacji G oraz masę mo:

(M) / (L-x)² = (m) / x²
M * x² = m * (L-x)²
M * x² = m * ( L² – 2*L*x + x² )
M * x² = m*L² – m*2*L*x + m*x²
m*L² – m*2*L*x + m*x² – M*x² = 0
m*x² -M*x² – m*2*L*x + m*L² = 0
(m-M)*x² – m*2*L*x + m*L² = 0

i powstało równanie kwadratowe – liczymy deltę i obliczamy szukaną odległość od Księżyca:

Δ = (m*2*L)² – 4*(m-M)*m*L² = m² * 4 * L² – 4*m²*L² + 4*M*m*L² =
= 4*M*m*L²

x = [ 2*m*L + √(4*M*m*L² ) ] : [2*(m-M)] =
= ( 2*m*L + 2*L * √(M*m) ) : 2*(m-M) =
= ( m*L + L * √(M*m) ) : (m-M) = [ 7,3477*1022 kg * 384 400 000 m +
+ 384 400 000m * √(5,9722 * 10 24 kg*7,3477 * 10 22 kg) ]:(7,3477*10 22kg – 5,9722 * 10 24 kg)  = 4795 633 m = 4795,6 km

Czyli w takiej odległości od Księżyca siły grawitacji Księżyca i Ziemi są jednakowe.

Masowy moment bezwładnosci

W zadaniach z dynamiki często spotykamy się z ruchem obrotowym lub/i z ruchem płaskim

Przyspieszenia liniowe i kątowe mas – dynamika – zadanie 37

i tam występuje pojęcie

masowego momentu bezwładności

Tę wielkość oznacza się  zwykle literą J. Można i należy zadać pytanie czym jest masowy moment bezwładności?

Jest to odpowiednik masy w ruchu obrotowym. Jak już wiesz, masa jest miarą bezwładności – jeżeli ktoś tego nie wie, to może poczuć – spróbuj ruszyć z miejsca samochód na gładkiej i poziomej drodze –

duża masa oznacza dużą bezwładność

i dlatego, żeby

rozpędzić pojazd musisz pokonać tę bezwładność.

Bezwładność warto zobrazować jako opór przed wprawianiem ciała w ruch. Takie działanie wymaga przyłożenia dużej siły w kierunku ruchu – to świetnie obrazuje

II zasada dynamiki Newtona.

Dynamika – druga zasada Newtona – podstawy

Dlatego znacznie łatwiej jest ruszyć z miejsca wózek z supermarketu (nawet jeżeli jest wypełniony zakupami), ponieważ ma znacznie mniejszą masę i przez tą niższą bezwładność.

To był ruch ruch postępowy i analogicznie będzie w ruchu obrotowym – rozpędzenie dużej obracającej się masy wymaga pokonania jej dużej bezwładności i to wymaga przyłożenia sporego momentu. W tym miejscu przypominam o istnieniu

II zasady dynamiki dla ruchu obrotowego.
Druga zasada dynamiki dla ruchu obrotowego – podstawy
Na koniec warto przytoczyć kilka przykładów masowych momentów bezwładności kilku brył:
– dla KULI o promieniu r i masie m:
J = 2/5 * m * r²

– dla WALCA o promieniu r i masie m:
J = 1/2 * m * r²

– dla RURY cienkościennej o promieniu r i masie m:
J = 1 * m * r²

Warto będzie wytłumaczyć przykładowy wzorek dla WALCA i w tym celu wyobraź sobie, że składa się on z BARDZO DUŻEJ liczby elementów rozłożonych wokół osi tego walca. W takim przypadku największa odległość elementu od osi wynosi r , a najmniejsza wynosi ZERO czyli element znajduje się w osi walca. Jeżeli mamy odległości elementów od osi od ZERA do r, to średnia odległość wynosi r/2 i dlatego we wzorku na walec widzimy liczbę 1/2.

Analogicznie ale trochę inaczej będzie w przypadku rury, gdzie wszystkie elementy są położone w odległości r od osi rury.

Z tych rozważań wynika konstruktywny wniosek:

Jeżeli konstruktor tworzy masę obrotową o jak największym masowym momencie bezwładności przy minimalnej masie, to będzie kierował się w stronę zależności na moment bezwładności rury cienkościennej – innymi słowami jak najwięcej masy rozłoży na jak największym promieniu. Takim obrazowym przykładem z życia jest koło zamachowe silnika spalinowego.

masowymomentbezwladnosci - Masowy moment bezwładnosci

Na zdjęciu powyżej widzisz stacjonarny jednocylindrowy silnik wysokoprężny Savoia pochodzący z 1920 roku. Kluczową cechą jest tylko jeden cylinder co wymaga (dla równomierności pracy) zastosowania koła zamachowego o dużym masowym momencie bezwładności. Patrząc na powyższy obrazek zwróć uwagę, że najwięcej materiału w kole zamachowym zostało zgromadzone na obwodzie czyli jest to tak zwany wieniec. Z osią obrotu wieniec łączą tylko drobne (w porównaniu z całą resztą) szprychy.  W ten sposób osiągnięto OGROMNY masowy moment bezwładności.

Prawda że łatwe?

Ruch obiegowy księżyca wokół planety – zadanie 55

Witam wszystkich i dzisiaj zahaczymy o astronomię i dynamikę:
Księżyc o masie m wykonuje ruch obiegowy wokół planety o masie M w odległości L. Okres obiegu wynosi T.

ksiezycokrazaplanete - Ruch obiegowy księżyca wokół planety - zadanie 55

Oblicz stosunek promieni ruchu (planety i księżyca) R/r wokół wspólnego środka masy.

Takie jest pytanie i na księżyc obiegający planetę działają:
– siła grawitacji Fg (z tego powodu że planeta go przyciąga )
– oraz siła odśrodkowa (ponieważ księżyc leci po okręgu)

To teraz zgodnie z II zasadą dynamiki Newtona

Dynamika – druga zasada Newtona – podstawy

(masa razy przyspieszenie równa się sumie sił)

napiszemy równanie dynamiczne dla księżyca wykonującego ruch obiegowy wokół planety:

ksiezycokrazaplanete2 - Ruch obiegowy księżyca wokół planety - zadanie 55

m * an = Fg

w którym występuje przyspieszenie normalne:

an = V² / R

oraz siła grawitacji:

Fg = G * M * m / L²

Okres T jest czasem jednego obiegu księżyca wokół planety. Przy założeniu że orbita jest okręgiem (to tylko założenie bo w rzeczywistości jest elipsą) prędkość obiegu wynosi:

V = 2 * π * R / T

Jak mamy wszystkie składniki, to wstawimy je do równania dynamicznego:

m * (2 * π * R / T)² / R = G * M * m / L²

i trochę to uprościmy:

m * 4 * π² * R / T² = G * M * m / L²

oraz podzielimy obie stromy przez masę m:

4 * π² * R / T² = G * M / L²

4 * π² * R * L² = G * M * T²

Z tego można policzyć promień na którym księżyc obiega wspólny środek masy:

R = ( 0,25 * G * M * T² ) / (π² * L²) = ( 0,025 * G * M * T² ) / L²

Różnica między daną odległością planeta-księżyc a obliczonym promieniem R daje (znacznie mniejszy) promień obiegu planety wokół wspólnego środka masy:

r = L – R = L – ( 0,025 * G * M * T² ) / L²

Stosunek promieni obiegu planety i księżyca wokół wspólnego środka masy wynosi:

r/R = [L – ( 0,025 * G * M * T² ) / L² ] / [( 0,025 * G * M * T² ) / L²]

Tyle wyszło, ale jedno jest pewne:
Wspólny środek masy (wokół którego oba ciała obiegają) znajduje się znacznie bliżej środka tego cięższego czyli planety. Sprawdzimy to na przykładzie Ziemi i Księżyca dla następujących danych:

Stała grawitacji:
G = 6,67408 * 10-11 m3/(kg*s2)

Prawo powszechnego ciążenia i stała grawitacji

Masa Ziemi:
M = 5,9722 * 10 24 kg

Okres obiegu:
T = 27,3 dnia = 655,2h = 2358 720s

Odległość Ziemia księżyc:
L = 384 400km = 384 400 000m

r/R = [L – ( 0,025 * G * M * T² ) / L² ] / [( 0,025 * G * M * T² ) / L²] =

= [384 400 000 +
– (0,025*6,67408*10-11 * 5,9722*10 24*2358720²) / 384400000²] /

/ [(0,025*6,67408*10-11 * 5,9722*10 24  * 2358720²  / 384400000²]  = =0,024 800 41
czyli odległość Ziemi od wspólnego środka masy wynosi około 2,5% odległości Ziemia-Księżyc czyli około 9,5km. Innymi słowami lżejsze ciało niebieskie leci po większym promieniu, a cięższe ciało (w tym przykładzie znacznie cięższe) leci po mniejszym promieniu.

Prawda że łatwe?

Gdy już rozmawiamy o Księżycu, to podczas misji kosmicznych człowiek zabrał ze sobą na Ziemię próbki gruntu tego ciała niebieskiego.

ksiezyc1 - Ruch obiegowy księżyca wokół planety - zadanie 55

Na zdjęciu powyżej widzisz kawałek skały pobranej z doliny Taurus-Littrow.

Siła naporu wiatru na parasol – dynamika – zadanie 54

Cześć Wam i teraz zrobimy zadanie z dynamiki z elementami aerodynamiki, które brzmi:

ILE RAZY OPÓR POWIETRZA (SIŁA NAPORU WIATRU) PARASOLA JEST WIĘKSZY NIŻ W PRZYPADKU ODWRÓCONEGO PARASOLA

silanaporuwiatru1 1024x389 - Siła naporu wiatru na parasol - dynamika - zadanie 54

Tak prostymi słowami, to zdarzyło Ci się, że przy porywistym wietrze parasol wywinął się w górę i o tę sytuację tutaj chodzi.

Przypomnijmy sobie jak się liczyło siłę oporu powietrza:

Prędkość spadania spadochroniarza – zadanie 50

Fop = ρ*V²/2 * A * Cx

gdzie:
ρ*V²/2 – ciśnienie dynamiczne
ρ=1,226kg/m3 – gęstość powietrza
V – prędkość wiatru
A – powierzchnia rzutu parasola
Cx – przybliżony współczynnik oporu powietrza czaszy parasola

Powierzchnia rzutu parasola to zwyczajnie powierzchnia koła o średnicy parasola. Można przyjąć średnicę parasola na :

D = 0,97 m

czyli powierzchnia rzutu wyniesie:

A = π/4 * D² = π/4 * 0,97² = 0,74m2

Współczynnik oporu powietrza czaszy parasola wynosi około:

Cx = 1,42

Dla porównania taki sam współczynnik dla parasola wywiniętego do góry:

Cx2 = 0,34

Teraz obliczymy siłę naporu na parasol dla wiatru (określanego jako silny) o prędkości

V = 49km/h = 13,6 m/s:

i jest to sytuacja, gdy podmuch próbuje wyrwać parasol z ręki,  w rezultacie przechyla go na bok i wieje wzdłuż uchwytu:

silanaporuwiatru2 - Siła naporu wiatru na parasol - dynamika - zadanie 54

Fop = ρ*V²/2 * A * Cx =
= 1,226kg/m3 *13,6² / 2 * 0,74m2 * 1,42 = 119N

czyli jest to już odczuwalna siła dla człowieka trzymającego parasol, pod warunkiem że parasol to wytrzyma i jego druciana konstrukcja nie ulegnie dewastacji.

Dla porównania obliczymy siłę naporu na parasol w pozycji odwiniętej do góry i w tym samym położeniu – i tutaj różny będzie jedynie współczynnik oporu powietrza wynikający z innego (odwrotnego) kształtu:

silanaporuwiatru3 - Siła naporu wiatru na parasol - dynamika - zadanie 54

Fop = ρ*V²/2 * A * Cx =
= 1,226kg/m3 *13,6² / 2 * 0,74m2 * 0,34 = 28N

Jak widać różnica jest ponad czterokrotna i dlatego wywinięty parasol jest łatwiej utrzymać na wietrze.