Dynamika – energia – zadanie 30

Dzisiaj zrobimy kolejne i trochę inne zadanie z energii:

Dynamika – energia – zadanie 21

Na rysunku widać że pudło startuje z prędkością początkową i zjeżdża po równi, w drugim etapie jedzie po drodze poziomej i w trzecim etapie wjeżdża po równi. Każdy z 3 odcinków odpowiada drodze s.

dynamika9

Pytanie na jakie szukamy odpowiedzi to:

JAKA MUSI BYĆ PRĘDKOŚĆ POCZĄTKOWA PUDŁA, ŻEBY PRZEJECHAŁO WSZYSTKIE 3 ODCINKI O DŁUGOŚCIACH s?

Po pierwsze

Ustalamy siły zewnętrzne działajace na pudło w każdym z 3 odcinków.

dynamika10

Jak widać na pudło działa:

  • ciężar m*g
  • nacisk N1 , N2 lub N3
  • tarcie μ*N1 , μ*N2 lub μ*N3

 

Po drugie

Piszemy równanie mówiące, że

ZMIANA ENERGII KINETYCZNEJ UKŁADU

RÓWNA SIĘ

PRACY WYKONANEJ PRZEZ SIŁY ZEWNĘTRZNE

ΔEk = ∑L

Ponieważ w tym zadaniu mamy 3 odcinki, po których porusza się pudło, to będziemy mieć 3 etapy kiedy praca będzie przechodzic w energię.
dynamika11
Poszczególne odcinki oznaczono na CZERWONO:
1-2 – odcinek pierwszy – zjazd z równi
2-3 – odcinek drugi – ruch po drodze poziomej
3-4 – odcinek trzeci – wjazd na równię

Kolejno dla poszczególnych odcinków równoważność pracy i zmiany energii:

Ek2 – Ek1 = ∑L1-2
Ek3 – Ek2 = ∑L2-3
Ek4 – Ek3 = ∑L3-4

Energia kinetyczna pudła w punkcie 1 – początek zjazdu z równi:
Ek1 = m * V² / 2

Energia kinetyczna pudła w punkcie 2 – po zjeździe z równi:
Ek2 = m * V2² / 2

Energia kinetyczna pudła w punkcie 3 – na końcu odcinka poziomego:
Ek3 = m * V3² / 2

Energia kinetyczna pudła w punkcie 4 – po wjeździe na równię:
Ek4 = 0

Suma prac sił zewnętrznych na poszczególnych odcinkach:
Odcinek 1-2 – praca siły tarcia i ciężaru:
∑L1-2 = m*g*s*sinα – N1*m*s

Odcinek 2-3 – praca siły tarcia:
∑L2-3 = (-N2)*m*s

Odcinek 3-4 – praca siły tarcia i ciężaru:
∑L3-4 = (-m)*g*s*sinα – N3*m*s

Na podstawie tego co powyżej powstaną 3 równania równoważności pracy i energii – trzy bo są 3 odcinki ruchu pudła:

Pierwszy odcinek:
m*V2² / 2  – m*V² / 2 = m*g*s*sinα – N1*m*s

Drugi odcinek:
m*V3² / 2 – m*V2² / 2 = (-N2)*m*s

Trzeci odcinek:
0 – m*V3² / 2 = (-m)*g*s*sinα – N3*m*s

W ten sposób powstał układ 3 równań i teraz policzymy niewiadome:
V2 , V , N1 , V3 , N2 , N3
6 niewiadomych i 3 równania czyli potrzeba 3 dodatkowych równań. Najbardziej stosowne będzie obliczenie nacisków N1 , N2 oraz N3 na 3 kolejnych odcinkach.

dynamika10
Pierwszy odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N1:
∑Piy = N1 – m*g*cosα = 0
Nacisk podczas zjazdu z równi:
N1 = m*g*cosα

Drugi odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N2:
∑Piy = N2 – m*g = 0
Nacisk podczas jazdy po drodze poziomej:
N2 = m*g

Trzeci odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N3:
∑Piy = N3 – m*g*cosα = 0
Nacisk podczas wjazdu na równię:
N3 = m*g*cosα

To jak już mamy policzone wszystkie naciski N1 , N2 i N3 to teraz to wstawimy do równań równoważności pracy i energii:
m*V2² / 2 – m*V² / 2 = m*g*s*sinα – m*g*cosα*m*s [1]
m*V3² / 2 – m*V2² / 2 = (-m*g )*m*s [2]
0 – m*V3² / 2 = (-m)*g*s*sinα – m*g*cosα*m*s [3]

Na początek bierzemy równanie [3] i obliczymy z niego prędkość na końcu odcinka poziomego V3:
m*V3² / 2 = m*g*s*sinα + m*g*cosα*m*s
V3² / 2 = g*s*sinα + g*cosα*m * s
V3² = 2*g*s*sina + 2*g*cosα*m*s
V3² = 2*g*s* ( sina + cosα*m )
V3 = √ [2*g*s * ( sina + cosα*m )]

Jak wstawimy V3 do równania [2] to można obliczyć V2:
m*2*g*s* ( sinα + cosα*m ) / 2 – m*V2² / 2 = (-m*g )*m*s
m*2*g*s * ( sinα + cosα*m ) – m*V2² = 2*(-m*g )*m*s
2*g*s * ( sinα + cosα*m ) – V2² = 2*(-g )*m*s
V2² = 2*g*s * ( sinα + cosα*m ) – 2*g*m*s
V2² = 2*g*s * ( sinα + cosα*m – m )
V2  = √ [2 * g * s * ( sinα + cosα*m – m )]

Jak wstawimy V2 do równania [1] to obliczymy szukaną początkową prędkość V:
m*2*g*s * ( sinα + cosα*m – m ) / 2  – m*V² / 2 = m*g*s*sinα – m*g*cosα*m*s

m*2*g*s * ( sinα + cosα*m – m ) – m*V²  = 2*m*g*s*sinα – 2*m*g*cosα*m*s

2*g*s * ( sinα + cosα*m – m ) – V²  = 2*g*s*sinα – 2*g*cosα*m*s

V² = 2*g*s * ( sinα + cosα*m – m ) – 2*g*s*sinα + 2*g*cosα*m*s

V² = 2*g*s * ( sinα + cosα*m – m – sinα + cosα*m )
V² = 2*g*s*m * ( 2*cosα – 1 )

Czyli prędkość początkowa jaką musi mieć pudło, żeby dojechać do punktu 4 wynosi:

V = √[2*g*s*m * ( 2*cosα – 1 )]

Prawda że łatwe ?

Dynamika – energia – zadanie 21

Mamy takie oto zadanie z energii:

energia2

Większa masa wisi na linie, która jest na górze przełożona przez krążek i leci do mniejszej masy która leży na powierzchni. Tutaj współczynnik tarcia wynosi . autor zadaje pytanie:

JAKĄ PRĘDKOŚĆ OSIĄGNIE WIĘKSZA WISZĄCA MASA PO PRZEBYCIU DROGI H ?

 

Po pierwsze

 

To teraz ustalmy w którą stronę ten cały układ jedzie:

Nie ma mowy o żadnej prędkości , a więc wszystko startuje ze startu zatrzymanego.

Wisząca większa masa M pod własnym ciężarem spada w dół i ciągnie mniejszą masę, która jedzie w prawo. Ponieważ oba pudła połączono nierozciągliwą liną, to oba jadą z taką samą prędkością.

energia3

Po drugie

 

Jeżeli wiadomo, jak to działa, to zaznaczamy siły ZEWNĘTRZNE działające na układ. W tym przypadku są to:

– ciężar m*g działający na masę m

– nacisk N działający na masę m

– tarcie N* działające na masę m

– ciężar działajacy na masę M

 

Po trzecie

 

Z równoważności pracy i energii wynika że zmiana energii kinetycznej układu jest równa wykonanej pracy:

Mechanika-dynamika-jeszcze raz podstawy

Ek2 – Ek1 = L

Układ rusza ze startu zatrzymanego, a więc początkowa energia kinetyczna:

Ek1 = 0

Energia kinetyczna końcowa będzie zwiazana z ruchem ciał posiadających masę:

Ek2 = M * V² / 2 + m * V² / 2

i tak jak napisano wcześniej obie masy, duża i mała, jadą z taką samą prędkością V.

I teraz prawa strona równania:

Pracę wykonują siły, które są RÓWNOLEGŁE do przesunięcia. W tym przypadku równoległe do przesunięcia są:

– ciężar wiszącego pudła – pudło jedzie w dół i jego ciężar też działa w dół

– tarcie działające na mniejsze pudło – pudło jedzie poziomo i tarcie też działa poziomo.

Praca równa się iloczynowi SIŁY razy PRZESUNIĘCIE, a więc prawa strona równania będzie wyglądać tak:

L = M * g * H – N * * H

Powyżej widać, że tarcie działa na takiej samej drodze H jak przesunięcie w pionie duzego pudła, ponieważ oba pudła połączono nierozciągliwą liną. Całe równanie będzie wyglądało tak:

M * V² / 2 + m * V² / 2 – 0 = M * g * H – N * * H

To teraz policzymy niewiadome:

Jak widać nie znamy prędkości V i nacisku N. Uwalniamy od więzów pudło o mniejszej masie m czyli:

energia4

– przykładamy ciężar m * g

– zastępujemy podłoże naciskiem N i tarciem N *

– zastępujęmy linę siłą naciągu S

Kolejno piszemy sumę rzutów na oś y, ponieważ tam występuje nieznany nacisk N:

Piy = N – m*g = 0

czyli nacisk na lżejsze pudło:

N = m * g

i wstawiamy to do ogólnego równania:

M * V² / 2 + m * V² / 2 – 0 = M * g * H – m * g * * H

Mnożymy obie strony równania przez 2:

M * V² + m * V² = 2 * M * g * H – 2 * m * g * * H

i wyciągamy kwadrat prędkości przed nawias:

V² * (M+m) = 2 * M * g * H – 2 * m * g * * H

i z tego wynika szukana prędkość V :

V² * (M+m) = 2*g*H * (M – m * )

V = √ [2*g*H*(M – m*) : (M+m)]

Mechanika – podstawy – II zasada dynamiki dla ruchu obrotowego

I tak ponownie wracamy do podstaw, ponieważ o tym zdarza nam się zapominać. O dynamice było już na samym początku i o II zasadzie dynamiki również.

Mechanika-dynamika-jeszcze raz podstawy

Tylko że wtedy było to odniesione do ruchu postępowego:

F = m * a [1]

czyli jeżeli na ciało o masie m działa siła F, to to ciało jedzie z przyspieszeniem a.

 

A jak to będzie w przypadku ruchu obrotowego?

II zasada dynamiki dla ruchu obrotowego wygląda tak:

M = J * 

czyli jeżeli na ciało o masowym momencie bezwładności J działa moment M, to ciało obraca się z przyspieszeniem kątowym .

Jak patrzymy na wzór [1] i [2] to siłę F zamieniono na moment M (przy ruchu obrotowym sile odpowiada moment), zamiast masy jest masowy moment bezwładności, a zamiast przyspieszenia liniowego mamy przyspieszenie kątowe.

I to właściwie tyle jeżeli chodzi o uzupełnienie II zasady dynamiki Newtona.

Dynamika – przyspieszenia poruszających się mas – zadanie 7

Witam ponownie i ponownie mamy proste zadanko z dynamiki, w którym obliczymy przyspieszenia poruszających się mas:

 

Do nieważkiego bębna o promieniu r przyłożono moment Mo. Na obu końcach cięgna nawiniętego na bęben zawieszono 2 masy m. Pomiędzy cięgnem a bębnem nie ma poślizgu.

dynamika4

Ile wyniosą przyspieszenia poruszających się mas?

 

Tyle wiadomo  teraz żeby się do tego zabrać to na wstępie:

Trzeba założyć, w jaki sposób to wszystko się będzie poruszać.

Przyłożony moment obraca kołem zgodnie ze wskazówkami zegara, czyli można się domyśleć, że lewe pudło pojedzie w górę, a prawe pudło będzie zjeżdżać w dół. Ponieważ oba pudła są połączone nierozciągliwą liną, to jedno i drugie pudło będzie się poruszać z takim samym przyspieszeniem.

W drugim kroku trzeba uwolnić od więzów wszystkie ciała, które mają masę, czyli to będzie lewe pudło i prawe pudło.dynamika5

Uwalniamy od więzów, czyli zastępujemy linę siłą napięcia S1 i ponieważ ciało posiada masę to w środku ciężkości przykładamy siłę ciężkości m*g. Z poprzedniego kroku zakładamy przyspieszenie ciała w górę.

Trzeci krok to jeżeli pudło uwolniliśmy od więzów to teraz piszemy równania dynamiczne pochodzące z II prawa dynamiki Newtona:
ILOCZYN MASY CIAŁA I JEGO PRZYSPIESZENIA RÓWNA SIĘ SUMIE PRZYŁOŻONYCH DO NIEGO SIŁ.

Mechanika-dynamika-jeszcze raz podstawy

Należy zaznaczyć że siły leżą na kierunku przyspieszenia:
m * p = S1 – m*g [1]

dynamika6

Analogicznie postępujemy z drugim pudłem czyli siłę w linie zastępujemy siłą S2 i przykładamy ciężar m*g. Równianie dynamiczne przyjmie postać:

m * p = m*g – S2 [2]

Mamy 2 równania dynamiczne i teraz liczymy niewiadome:
p , S1 , S2
czyli 3 niewiadome i 2 równania a więc potrzebne jest dodatkowe równanie dynamiczne lub kinematyczne. I tutaj warto wykorzystać krążek, do którego przyłożono moment – dla niego napiszemy równanie dynamiczne dla ruchu obrotowego:

dynamika3

J * e = S2 * r + Mo – S1 * r [3]

Wiadomo że moment bezwładności krążka wynosi zero, ponieważ krążek jest nieważki:
J = 0
I wiadomo, jaka jest relacja między przyspieszeniami:
– kątowym bębna
– i liniowym pudła:
p = ε * r
I z tego obliczymy przyspieszenie kątowe krążka:
ε = p : r
I teraz to co powyżej wstawiamy do równania [3]:
0 * p/r = S2 * r + Mo – S1 * r

0 = S2 * r + Mo – S1 * r [3]

To jak już mamy 3 równania, to przyrównujemy stronami równania [1] i [2]:
S1 – m*g = m*g – S2
S1 = 2*m*g – S2 [1+2]

Z równania [3] wyciągamy siłę w linie S1:
S1 * r = S2 * r + Mo
S1 = S2 + Mo/r  [3]

Równania [1+2] oraz [3] odejmujemy stronami:
S1 – S1 = 2*m*g – S2 – S2 – Mo/r
0 = 2*m*g – 2*S2 – Mo/r
0 = m*g – S2 – 0,5*Mo/r
S2 = m*g – 0,5*Mo/r

Z równania [1] wyciągamy p, podstawiamy obliczone powyżej S2 i od razu dostajemy szukane przyspieszenie:
p = g – S2/m = g – ( m*g – 0,5*Mo/r )/m = g – ( g – 0,5*Mo/(r*m) )  =
= 0,5*Mo/(r*m)

Dynamika – zadanie z tarciem

To może teraz zadanie z dynamiki w którym występuje tarcie:

NA POZIOMYM STOLE NA KARTCE LEŻY PUDEŁKO O MASIE m. WSPÓŁCZYNNIK TARCIA MIĘDZY KARTKĄ I PUDEŁKIEM WYNOSI µdynamika1

I jak wiemy co tu się dzieje to teraz jest takie pytanie:

Z JAKIM PRZYSPIESZENIEM NALEŻY RUSZYĆ KARTKĄ, ŻEBY PUDEŁKO ZJECHAŁO Z KARTKI?

Czyli tradycyjnie uwalniamy pudełko od więzów, czyli zastępujemy kartkę siłami:

– nacisku

– i tarcia ponieważ jest dany współczynnik tarcia 

dynamika2

Siła tarcia jest w tą stronę co przyspieszenie ponieważ pudełko będzie chciało zjechać w stronę przeciwną – siła tarcia jest zawsze przeciwna do ruchu który ma nastąpić – przeszkadza ruchowi.

No i teraz piszemy równania dynamiczne:

Równanie w kierunku zgodnym z przyspieszeniem:

m * p = N * µ [1] 

Mechanika-dynamika-jeszcze raz podstawy

Równanie w kierunku prostopadłym do przyspieszenia:

m * 0 = N – m*g [2]

Z drugiego równania obliczamy nacisk:

N = m*g

i wstawiamy do równania [1]:

m * p = m * g * µ

Dzielimy obie strony równania przez m i dostajemy przyspieszenie z jakim należy ruszyć kartką żeby pudełko zjechało z kartki:

p = g * µ 

I to jest odpowiedź na postawione pytanie. Prawda że proste?

Mechanika – podstawy dynamiki

A więc dzisiaj będzie o podstawach

DYNAMIKI

– zajmuje się ona działającymi siłami i ruchem ciał. Tutaj spełniona jest

 DRUGA ZASADA DYNAMIKI NEWTONA

Jeżeli na ciało o masie m działa stała siła F

to

ciało porusza się z przyspieszeniem p = F/m

MECHANIKA WSTEP 5

 

Jak już doszliśmy do dynamiki to za chwilę pojawiają się 3 pojęcia:

PRACA

ENERGIA

MOC

I dokładnie w tej kolejności – praca, potem energia a dopiero na końcu moc.

Zacznijmy od tego czym jest praca – tak bardzo prosto to

 ILOCZYN SIŁY I PRZESUNIĘCIA

przy czym i siła i przesunięcie są do siebie równoległe.

Jeżeli siła i przesunięcie NIE są równoległe

to

rzutujemy siłę na prostą wzdłuż której przesunięcie następuje i praca równa się:

RZUT SIŁY x PRZESUNIĘCIE

Przy ruchu obrotowym praca równa się iloczynowi momentu i kąta obrotu.

Jak już wiadomo czym jest praca to tym bardziej będzie wiadomo czym jest energia:

ENERGIA TO MOŻLIWOŚĆ WYKONANIA PRACY

I żeby było jeszcze ciekawiej to i pracę i energię mierzymy w dżulach (J). Zarówno energia może przechodzić w pracę, jak i praca może wywołać wzrost energii (na przykład wzrost energii jakiegoś ciała o jakiejś masie).
W zadaniach z dynamiki które robi się metodą energetyczną występuje równanie:

ZMIANA ENERGII KINETYCZNEJ = PRACA WYKONANA

I to jest świetna ilustracja poprzedniego zdania – praca przeszła w energię lub odwrotnie.

Na przykład:

Kula o masie M spada z dachu o wysokości H. I teraz zadajemy sobie pytanie:

DLACZEGO KULA SPADA?

I to też jest proste: kula spada bo działa na nią siła grawitacji. Grawitacja działa w dół i kula też spada w dół czyli i siła i przesunięcie są do siebie równoległe :

PRACA SIŁY CIĘŻKOŚCI = SIŁA CIĘŻKOŚCI x PRZESUNIĘCIE

Jeżeli siła ciężkości wykonała pracę

to

musiała się zmienić energia kinetyczna kuli – no i się zmieniła dokładnie o tyle ile pracy zostało wykonane:

ZMIANA ENERGII KINETYCZNEJ = SIŁA CIĘŻKOŚCI x PRZESUNIĘCIE

Prawda że proste?

To na razie tyle podstaw

DYNAMIKI

I to będzie jeszcze prostsze jak przejdziemy to zadań.