Statyka – układ przestrzenny – zadanie 31

Jakiś czas temu było zadanie ze statyki z układów płaskich a teraz zrobimy prosty układ przestrzenny.

Jest taka sobie klapa o masie m w kształcie trójkąta równoramiennego ułożyskowana na jednym z boków.
statyka22
Żeby się ta klapa trzymała w pozycji poziomej, to do jednego z wierzchołków przymocowano cięgno. Drugi koniec cięgna zamocowano do pionowej ściany na wysokości h równej długości boku trójkąta. Autor zadaje pytanie:

OBLICZ REAKCJE WIĘZÓW

Jasna sprawa że chodzi o:
– reakcje w łożyskach
– i siłę w cięgnie.

Po pierwsze

Uwalniamy od więzów czyli zastępujemy siłami łożyska i pręt, bo to łączy klapę ze światem zewnętrznym.
statyka23
W lewym łożysku będziemy mieć 3 reakcje ( 2 poprzeczne i jedna wzdłużna) ponieważ jest to łożysko poprzeczno-wzdłużne. W prawym łożysku będą 2 prostopadłe reakcje w poprzek osi obrotu klapy, ponieważ jest to łożysko poprzeczne. Szósta reakcja jest siłą wzdłuż cięgna. Ciężar klapy przykładamy w środku ciężkości trójkąta czyli w 1/3 wysokości od podstawy.

Po drugie

Piszemy równania równowagi. Tutaj można napisać 6 równań ( trzy sumy rzutów sił na osie i trzy sumy momentów wokół osi) ponieważ jest to układ sił:
– przestrzenny
– rozbieżny – bo siły nie zbiegają się w jednym punkcie

Przy okazji warto określić położenie siły S a dokładnie kąt zawarty między siłą S a bokiem trójkąta.
Wiemy że zarówno podstawa jak i wysokość trójkąta mają długość h. Jak podzielimy trójkąt na pół to będziemy mieć 2 jednakowe trójkąty prostokątne.statyka24
Długości przyprostokątnych widzimy na rysunku powyżej a przeciwprostokątną obliczymy z twierdzenia Pitagorasa:
h² + (h/2)² = AC²
AC = √[h² + (h/2)² ] = √ [h² + h² /4 ] = √ [1,25*h² ]  = 1,12 * h

To już zrobione, to teraz trzeba obliczyć kąt między cięgnem-siłą S a obliczoną przeciwprostokątną AC.
statyka25
Jak widać na powyższym rysunku, jest to kąt między przeciwprostokątną klapy a jedną z przyprostokątnych kolejnego trójkąta prostokątnego ale tym razem takiego który jest umieszczony w pionie. Widać również, że mamy długości 2 boków, czyli możemy użyć trygonometrii. Jeżeli w trójkącie prostokątnym mamy kąt i 2 przyprostokątne, to z daleka widać, że to będzie tangens:
tgα = h : (1,12*h) = 0,893
czyli szukany kąt wynosi
α = arctg0,893 = 42°

Kolejna pomocnicza czynność to obliczenie kąta wierzchołkowego klapy w punkcie mocowania cięgna. Tutaj warto wrócić do połowy trójkąta równoramiennego-klapy czyli trójkąta prostokątnego ADC.

statyka26
Na rysunku powyżej oznaczono połowę kąta wierzchołkowego klapy jako β/2. Znamy wszystkie długości boków w trójkącie prostokątnym i jeżeli wiemy że do obliczenia kąta musimy użyć trygonometrii, to możemy użyć dowolnej funkcji. Dla uproszczenia obliczeń użyjemy funkcji tangens:
tgβ/2 = 0,5*h / h = 0,5
β/2 = arctg0,5 = 26,5°
a więc szukany kąt wierzchołkowy trójkąta w punkcie mocowania cięgna wyniesie:
β = 53°
To jak już mamy wszystkie kąty i wzajemne położenie sił działających na klapę, to warto rozłożyć siłę w cięgnie S na dwie składowe, ponieważ nie jest ona równoległa do żadnej osi. Wiadomo tyle, że tworzy ona kąt a z bokiem AC trójkąta, wobec tego rozkładamy ją  na 2 składowe:
– pionową S*sinα
– równoległą do boku trójkąta S*cos α

statyka27

Po trzecie

To teraz piszemy równania równowagi statycznej dla tego układu i dobrze będzie zacząć od sumy momentów:
∑Mix = m*g*h/3 – S*sinα*h=0 [1]
Wiadomo, że siła daje moment względem osi jeżeli:
NIE PRZECINA osi
– lub NIE JEST RÓWNOLEGŁA do osi
Wobec tego moment względem osi x (osi obrotu klapy) dają ciężar m*g i siła w cięgnie S.
Wiadomo również, że:
MOMENT = SIŁA * RAMIĘ
oraz wiadomo również, że siła i ramię muszą być do siebie PROSTOPADŁE.
W nawiązaniu do powyższego równania momentów:
– ciężar m*g działa na ramieniu 1/3 wysokości trójkąta h (bo tutaj jest jego środek ciężkości)
– składowa S*sinα działa na ramieniu h
I tutaj należy podkreślić, że składowa S*cosα nie daje momentu, ponieważ PRZECINA oś x. Jak już to wszystko wiadomo, to lecimy z pozostałymi osiami:
∑Miy = m*g*h/2 – S*sinα*h/2 – RBz*h = 0 [2]
Tutaj należy podkreślić że siły RAz i RAx nie dają momentów, bo przecinają oś y, a siły RAy i RBy też NIE dają momentów, ponieważ są do osi y RÓWNOLEGŁE.
No i została oś z:
∑Miz = RBy * h = 0 [3]
Sumy momentów są zrobione to teraz sumy rzutów sił:
∑Pix = RAx + S*cosα*sin β/2 = 0 [4]
∑Piy = RAy + RBy – S*cosα*cosβ/2 = 0 [5]
∑Piz = RAz + RBz – m*g + S*sinα = 0 [6]

I oto mamy wszystkie równania statyczne dla tego układu. Z powyższych 6 równań można wszystkie reakcje obliczyć. Z równania [1] obliczymy siłę w cięgnie:
m*g*h/3 = S*sinα*h
m*g = S*sinα*3
S = m*g : (3*sinα) = m*g : (3*sin42° ) = 0,5*m*g

Z równania [2] obliczymy reakcję RBz:
m*g*h/2 – S*sinα*h/2 = RBz*h
RBz = m*g/2 – S*sinα/2 = 0,5*m*g – 0,5*m*g*sin21° = 0,32*m*g
Z równania [3] wynika:
RBy = 0

Z równania [4] obliczymy reakcję RAx:
RAx = (-S)*cosα*sinβ/2 = (-m*g / (3*sin α) )*cosα*sinβ/2 =
= (-0,17)*m*g*ctgα*sinβ = (-0,17)*m*g*ctg42°*sin53° =
= (-0,15)*m*g

Z równania [5] obliczymy RAy:
RAy = (-RBy) + S*cosα*cosβ/2 = 0,17*m*g*ctgα*cosβ  =
= 0,17*m*g*ctg42°*cos53°  = 0,11*m*g

Z równania [6]obliczymy reakcję RAz:
RAz = (-RBz) + m*g – S*sinα = (-m)*g/2 + S*sinα/2 + m*g – S*sinα =
= S*(sinα /2-sinα) + 0,5*m*g =
= m*g / (3*sinα)*(sinα/2-sinα) + 0,5*m*g =
= 0,33*m*g * sin21° / sin42° + 0,17*m*g = 0,35*m*g

Prawda że łatwe?

Dynamika – energia – zadanie 30

Dzisiaj zrobimy kolejne i trochę inne zadanie z dynamiki z energii:

Dynamika – energia – zadanie 21

Na rysunku widać że pudło startuje z prędkością początkową i zjeżdża po równi, w drugim etapie jedzie po drodze poziomej i w trzecim etapie wjeżdża po równi. Każdy z 3 odcinków odpowiada drodze s.

dynamika9

Pytanie na jakie szukamy odpowiedzi to:

JAKA MUSI BYĆ PRĘDKOŚĆ POCZĄTKOWA PUDŁA, ŻEBY PRZEJECHAŁO WSZYSTKIE 3 ODCINKI O DŁUGOŚCIACH s?

Po pierwsze

Ustalamy siły zewnętrzne działające na pudło w każdym z 3 odcinków.

dynamika10

Jak widać na pudło działa:

  • ciężar m*g
  • nacisk N1 , N2 lub N3
  • tarcie μ*N1 , μ*N2 lub μ*N3

 

Po drugie

Piszemy równanie mówiące, że

ZMIANA ENERGII KINETYCZNEJ UKŁADU

RÓWNA SIĘ

PRACY WYKONANEJ PRZEZ SIŁY ZEWNĘTRZNE

ΔEk = ∑L

Ponieważ w tym zadaniu mamy 3 odcinki, po których porusza się pudło, to będziemy mieć 3 etapy kiedy praca będzie przechodzić w energię.
dynamika11
Poszczególne odcinki oznaczono na CZERWONO:
1-2 – odcinek pierwszy – zjazd z równi
2-3 – odcinek drugi – ruch po drodze poziomej
3-4 – odcinek trzeci – wjazd na równię

Kolejno dla poszczególnych odcinków równoważność pracy i zmiany energii:

Ek2 – Ek1 = ∑L1-2
Ek3 – Ek2 = ∑L2-3
Ek4 – Ek3 = ∑L3-4

Po trzecie

Energia kinetyczna pudła w punkcie 1 – początek zjazdu z równi:
Ek1 = m * V² / 2

Energia kinetyczna pudła w punkcie 2 – po zjeździe z równi:
Ek2 = m * V2² / 2

Energia kinetyczna pudła w punkcie 3 – na końcu odcinka poziomego:
Ek3 = m * V3² / 2

Energia kinetyczna pudła w punkcie 4 – po wjeździe na równię:
Ek4 = 0

Po czwarte

Suma prac sił zewnętrznych na poszczególnych odcinkach:
Odcinek 1-2 – praca siły tarcia i ciężaru:
∑L1-2 = m*g*s*sinα – N1*m*s

Odcinek 2-3 – praca siły tarcia:
∑L2-3 = (-N2)*m*s

Odcinek 3-4 – praca siły tarcia i ciężaru:
∑L3-4 = (-m)*g*s*sinα – N3*m*s

Na podstawie tego co powyżej powstaną 3 równania równoważności pracy i energii – trzy bo są 3 odcinki ruchu pudła:

Pierwszy odcinek:
m*V2² / 2  – m*V² / 2 = m*g*s*sinα – N1*m*s

Drugi odcinek:
m*V3² / 2 – m*V2² / 2 = (-N2)*m*s

Trzeci odcinek:
0 – m*V3² / 2 = (-m)*g*s*sinα – N3*m*s

Po piąte

W ten sposób powstał układ 3 równań i teraz policzymy niewiadome:
V2 , V , N1 , V3 , N2 , N3
6 niewiadomych i 3 równania czyli potrzeba 3 dodatkowych równań. Najbardziej stosowne będzie obliczenie nacisków N1 , N2 oraz N3 na 3 kolejnych odcinkach.

dynamika10
Pierwszy odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N1:
∑Piy = N1 – m*g*cosα = 0
Nacisk podczas zjazdu z równi:
N1 = m*g*cosα

Drugi odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N2:
∑Piy = N2 – m*g = 0
Nacisk podczas jazdy po drodze poziomej:
N2 = m*g

Trzeci odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N3:
∑Piy = N3 – m*g*cosα = 0
Nacisk podczas wjazdu na równię:
N3 = m*g*cosα

To jak już mamy policzone wszystkie naciski N1 , N2 i N3 to teraz to wstawimy do równań równoważności pracy i energii:
m*V2² / 2 – m*V² / 2 = m*g*s*sinα – m*g*cosα*m*s [1]
m*V3² / 2 – m*V2² / 2 = (-m*g )*m*s [2]
0 – m*V3² / 2 = (-m)*g*s*sinα – m*g*cosα*m*s [3]

Na początek bierzemy równanie [3] i obliczymy z niego prędkość na końcu odcinka poziomego V3:
m*V3² / 2 = m*g*s*sinα + m*g*cosα*m*s
V3² / 2 = g*s*sinα + g*cosα*m * s
V3² = 2*g*s*sina + 2*g*cosα*m*s
V3² = 2*g*s* ( sina + cosα*m )
V3 = √ [2*g*s * ( sina + cosα*m )]

Jak wstawimy V3 do równania [2] to można obliczyć V2:
m*2*g*s* ( sinα + cosα*m ) / 2 – m*V2² / 2 = (-m*g )*m*s
m*2*g*s * ( sinα + cosα*m ) – m*V2² = 2*(-m*g )*m*s
2*g*s * ( sinα + cosα*m ) – V2² = 2*(-g )*m*s
V2² = 2*g*s * ( sinα + cosα*m ) – 2*g*m*s
V2² = 2*g*s * ( sinα + cosα*m – m )
V2  = √ [2 * g * s * ( sinα + cosα*m – m )]

Jak wstawimy V2 do równania [1] to obliczymy szukaną początkową prędkość V:
m*2*g*s * ( sinα + cosα*m – m ) / 2  – m*V² / 2 = m*g*s*sinα – m*g*cosα*m*s

m*2*g*s * ( sinα + cosα*m – m ) – m*V²  = 2*m*g*s*sinα – 2*m*g*cosα*m*s

2*g*s * ( sinα + cosα*m – m ) – V²  = 2*g*s*sinα – 2*g*cosα*m*s

V² = 2*g*s * ( sinα + cosα*m – m ) – 2*g*s*sinα + 2*g*cosα*m*s

V² = 2*g*s * ( sinα + cosα*m – m – sinα + cosα*m )
V² = 2*g*s*m * ( 2*cosα – 1 )

Czyli prędkość początkowa jaką musi mieć pudło, żeby dojechać do punktu 4 wynosi:

V = √[2*g*s*m * ( 2*cosα – 1 )]

Prawda że łatwe ?

Wytrzymałość złożona – zginanie i skręcanie – zadanie 29

Dzisiaj zrobimy kolejne i trochę nietypowe zadanie z wytrzymałości złożonej.

Wytrzymałość złożona – zadanie 23

Belkę o średnicy d i długości 2*a wmurowano w ścianę i obciążono na lewym końcu momentem skręcającym q*a² i obciążeniem ciągłym q.

zlozona13

Wiadomo, że a=10*d. Autor zadaje pytanie:

OBLICZ NAJWIĘKSZE NAPRĘŻENIE ZREDUKOWANE

1.Belka może być rozciągana, ścinana, zginana lub/i skręcana.

W tym przypadku widać, że belka nie będzie rozciągana, ponieważ żadna siła nie działa WZDŁUŻ belki.

2.A jak będzie ze ŚCINANIEM ?:

Na odcinku AB poprzecznie do belki działa obciążenie ciągłe q. I jak to będzie w poszczególnych punktach i przedziałach? Tradycyjnie bierzemy KARTKĘ i będziemy odsłaniać poszczególne części belki.

zlozona14

Teraz zasłaniamy tak, żeby widzieć tylko lewy koniec belki i punkt A:

TA = 0

bo tutaj jeszcze żadna siła nie działa w poprzek.

W kolejnym kroku odsłaniamy cały lewy przedział AB:

zlozona15

TB = (-q) * a

ponieważ w poprzek belki działa obciążenie q na długości a.

Następnie odsłaniamy całą belkę:

zlozona16

TBC = (-q) * a

Siła tnąca policzona, to można zrobić wykres.

zlozona17

3.Ścinanie załatwione – przyszła pora na ZGINANIE.

Ponownie zasłaniamy tak, żeby widzieć tylko lewy koniec belki i punkt A:

zlozona14

MgA = 0

Kolejno odsłaniamy cały lewy przedział AB:

zlozona15

MgB = q*a * a/2 = 1/2*q*a2

Belkę zgina siłą q*a działającą na ramieniu a/2.

Na koniec odsłaniamy całą długość belki:

zlozona16

MgC = q*a * 1,5*a = 3/2*q*a²

Kolejno q*a to jest siła, następnie 1,5*a to jest odległość od KARTKI (punktu C) do połowy obciążenia ciągłego q. Wszystko wiadomo o momentach gnących, czyli można narysować wykres.

zlozona18

4.Teraz zajmiemy się SKRĘCANIEM i widać, że cała belka jest skręcana tym samym momentem q*a²:

MsAB = q*a²

MsBC = q*a²

zlozona19

5.To już mamy wszystkie wykresy i widać gołym okiem, że w każdym z 3 wykresów największe obciążenie występuje w punkcie C.

I tutaj obliczymy naprężenia zredukowane.

Przekrój belki:

A = * d² / 4

Wskaźnik wytrzymałości przekroju na zginanie:

W = * d³ / 32

Wskaźnik wytrzymałości przekroju na skręcanie:

Wo = * d³ / 16

Naprężenia ścinające w punkcie C:

C = TBC : A = (q * a) : ( * d² / 4) = 1,3 * q * 10 * d / d² = 13 q/d

Naprężenia zginające w punkcie C:

gC = MgC : W = (3/2 * q * a²) : ( * d³ / 32) =

= (32 * 3/2 * q * a²) : ( * d³) = 15 * q * (10*d)² / d³ = 1500 q/d

Naprężenia skręcające w punkcie C:

sC = MsBC : Wo = (q * a²) : ( * d³ / 16) = (16 * q * a²) : ( * d³) =

= 5,1 * q * (10 * d)² / d³ = 510 q/d

Z hipotezy Hubera obliczymy naprężenia zredukowane, czyli takie, które łączą wszystkie naprężenia razem:

redC = √[(rc+gc)² + 3*(c+sc)²] = √ [(gc)² + 3*(c+sc)² ] =

= √ [(1500q/d)² + 3*(13q/d+510q/d)² ] = 1752q/d

Prawda że proste?

Kratownica płaska – metoda przecięć – statyka -zadanie 28

Witam i dzisiaj zrobimy kratownicę płaską metodą przecięć. Niedawno było jedno zadanie z kratownic.

Statyka – kratownica płaska – zadanie 22

Tamto rozwiązaliśmy metodą RÓWNOWAGI WĘZŁÓW, ponieważ chodziło o obliczenie sił we WSZYSTKICH prętach. Jest kolejny sposób na kratownice – METODA PRZECIĘĆ i stosuje się ją wtedy, kiedy mamy obliczyć siłę w jednym lub kilku prętach, które znajdują się w dowolnym miejscu kratownicy. Po takim krótkim wstępie można przejść do zadania:

rozciaganie15

Jak widać jest kratownica i jest takie pytanie

OBLICZYĆ SIŁĘ W 2 PRĘTACH OZNACZONYCH LINIĄ PRZERYWANĄ

Po pierwsze

Uwalniamy kratownicę JAKO CAŁOŚĆ od więzów, żeby obliczyć reakcje podpór.

rozciaganie16

Od razu ważna uwaga:

NIE MUSIMY obliczać reakcji we wszystkich podporach – wystarczy obliczyć reakcję w jednej podporze – w tym przypadku najlepiej RA. W tym celu obliczamy sumę momentów względem punktu B:

MiB = RA * 3 * L + F * 2 * L + F * L = 0

Dzielimy obie strony równania przez L:

RA * 3 + F * 2 + F = 0

RA * 3 + F * 3 = 0

RA + F = 0

Reakcja w lewej podporze:

RA = (-F)

Po drugie

Na wstępie było powiedziane o METODZIE PRZECIĘĆ, a więc teraz przetniemy kratownicę przez te pręty, w których chcemy obliczyć siły.

To tak jakbyśmy ją przecinali na dwie części, ale bardzo ważne żeby przecinać przez MAKSYMALNIE 3 PRĘTY – później okaże się w praktyce dlaczego tak.

rozciaganie17

Powyżej widzimy jedną z możliwości, jak będzie dobrze przeprowadzić linię cięcia – czerwona linia leci przez 2 pręty (w nich obliczymy siły – linia przerywana) i jeszcze jeden, który jest pod nimi.

Po trzecie

Uwalniamy od więzów tę część, która jest na lewo od czerwonej falistej linii – linii cięcia

rozciaganie18

Powyżej widać że mamy płaski ROZBIEŻNY układ sił, czyli możemy napisać 3 równania równowagi. To dlatego chodziło o przecięcie kratownicy maksymalnie przez 3 pręty.

rozciaganie19

Dobrze będzie zacząć od równania momentów względem punktu B (punkt przecięcia sił S2 oraz S3), ponieważ przez ten punkt przechodzą 2 niewiadome siły:

MiB = S1*L + F*L + RA*2*L = 0

S1*L + F*L + (-F)*2*L = 0

Dzielimy obie strony równania przez L:

S1 + F + (-F)*2 = 0

S1 – F = 0

Siła w pręcie nr 1:

S1 = F

Pozostała jeszcze do obliczenia siła S2 i w tym celu warto napisać sumę rzutów sił na oś y:

Piy = RA + F – S2*sin45o = 0

(-F) + F – S2*sin45o = 0

(- S2) * sin45o = 0

A więc siła w pręcie nr 2 wynosi:

S2 = 0

Jak widać dwa równania równowagi dla części kratownicy załatwiły wszystko.

Rozciąganie – układ statycznie niewyznaczalny – wytrzymałość – zadanie 27

No i mamy kolejne

Wytrzymałość – rozciąganie – układ statycznie niewyznaczalny – zadanie 18

ciekawe zadanie z rozciągania i układów statycznie niewyznaczalnych. 3 pręty połączone przegubem obciążono w tym samym przegubie siłą P.
rozciaganie10
Autor zadaje pytanie:

OBLICZ SIŁY W PRĘTACH

Tradycyjnie uwalniamy węzeł od więzów, czyli zastępujemy pręty siłami.
rozciaganie11

Po pierwsze

Jak widać, powstał układ PŁASKI ZBIEŻNY i można tutaj napisać DWA równania równowagi:
– suma rzutów na oś x
– suma rzutów na oś y

∑Pix = S2 * sinα – S3 * sinα = 0 [1]
∑Piy = S1 – P + S2 * cosα – S3 * cosα = 0 [2]

Po drugie

Napisaliśmy 2 równania równowagi, bo tyle można było, a niewiadomych jest 3:
S1 , S2 oraz S3
a więc tak jak już było mówione, jest to zadanie STATYCZNIE NIEWYZNACZALNE a dokładnie jednokrotnie statycznie niewyznaczalne.
Wobec powyższego musimy zrobić jeszcze jedno TRZECIE równanie i w tym przypadku będzie ono związane z odkształceniami.
rozciaganie12
Na rysunku powyżej widać pręty nr 2 i 3 przed odkształceniem i po odkształceniu.

Tak jak widać, węzeł przesunął się pionowo w dół (z punktu A do punktu A’) zgodnie z kierunkiem działania siły. To pionowe przesunięcie jest równe wydłużeniu pręta nr 1 (tego pionowego).

Ze skośnymi prętami nr2 i nr3 jest trochę trudniej:
Linią ciągłą widać pręty przed odkształceniem, a linią przerywaną widać pręty po odkształceniu.

Oba pręty po odkształceniu leżą POD TYM SAMYM KĄTEM, ale jak widać pręt nr 3 skrócił się, a pręt nr 2 wydłużył. Tylko teraz powstaje pytanie, o ile się wydłużył:
Widać obok siebie pręt nr 2 przed odkształceniem i obok widać ten sam pręt po odkształceniu (linią przerywaną).

No to jak 2 pręty leżą obok siebie , to widać który jest dłuższy – dłuższy jest pręt nr 2 po odkształceniu.

Żeby było jeszcze ciekawiej , to widać o ile pręt nr 2 się wydłużył – zmienił swoją długość o ΔL2.

A najlepsze jest to że o tyle samo skrócił się  pręt nr 3:
ΔL2 = ΔL3
Można by się zapytać, dlaczego oba pręty zmieniły swoją długość o taki sam odcinek, ale też jest proste:
Bo są do siebie równoległe, przy czym każdy przypadek układu prętów należy rozpatrywać indywidualnie.
To teraz jak już mamy narysowane jak leżą i jak wydłużają się poszczególne pręty, to teraz napiszemy najprostszą zależność która wiąże poszczególne odkształcenia.

I ta TRZECIA zależność powstała przy okazji, ponieważ widzimy trójkąt prostokątny (ten czerwony), w którym przeciwprostokątną jest ΔL1, a jedną  z przyprostokątnych jest ΔL2 = ΔL3.

rozciaganie14

Jak mamy trójkąt prostokątny to z daleka już czuć TRYGONOMETRIĘ, a więc postawmy tutaj takie pytanie:
W jakiej funkcji trygonometrycznej występują te 2 boki trójkąta? Jak się tak dobrze przyjrzeć to można zobaczyć, że to będzie cosinus:

cosα = ΔL2 : ΔL1
Można to zapisać inaczej:
ΔL2 = ΔL1 * cosα

To teraz jeżeli mamy równanie, w którym są odkształcenia rozciąganych prętów, to wstawimy w to znane już prawo Hooke’a:

 

siła w pręcie * długość pręta
wydłużenie = —————————————————————————-
moduł Younga * przekrój pręta

 

S2 * L/cosα        S1 * L/cosα
——————- = ——————– * cosα
E * F                    E * F

 

S2 * L/cosα           S1 * L
——————- = —————
E * F                    E * F
Dzielimy obie strony równania przez L i mnożymy przez E*F:
S2 / cosα = S1

i to jest TRZECIE równanie, którego tak poszukiwaliśmy.

Po trzecie

Teraz mając 3 niewiadome siły w 3 prętach i 3 równania możemy łatwo te siły obliczyć:
∑Pix = S2 * sinα – S3 * sinα = 0 [1]
∑Piy = S1 – P + S2 * cosα – S3 * cosα = 0 [2]
S2 /cosα = S1 [3]

Upraszczamy równanie [1]:
S2 * sinα = S3 * sinα
S2 = S3
i wstawiamy do [2]:
S1 – P + S3 * cosα – S3 * cosα = 0
S1 – P  = 0
Siła w pręcie nr1 wyniesie:
S1 = P

Z równania [3] wynikają siły w prętach nr2 i nr3:
S2 = cosa * S1 = S3

Prawda że łatwe?

Ściskanie mimośrodowe – wytrzymałość – zadanie 26

To tak na wstępie powiedzmy sobie, co to jest ściskanie mimośrodowe:

To jest tak, jakby ściskać prostopadłościan po przyłożeniu siły nie w środku ścianki tylko trochę z boku.

mimosodowe1

Tak jak widać na rysunku powyżej, siła jest przyłożona nie w osi prostopadłościanu, tylko lekko przesunięta.

Wymiary podstawy wynoszą a x a. Wysokość prostopadłościanu wynosi 2*a. Wartość siły wynosi F i jej punkt przyłożenia jest przesunięty w bok o odległość e względem osi symetrii. Dodatkowo wiadomo, że

e = 0,25 * a

mimosrodowe2

Autor zadaje pytanie:

 

OBLICZ  MAKSYMALNE NAPRĘŻENIA NORMALNE W PRZEKROJU W POŁOWIE WYSOKOŚCI PROSTOPADŁOŚCIANU

 

Zacznijmy od tego jakie obciążenia działają na prostopadłościan:

Po pierwsze

To że jest ściskany siłą F wzdłuż wysokości, to widać ponieważ siła F działa w pionie czyli też wzdłuż wysokości.

Po drugie

Ponieważ siła F nie działa na sam środek podstawy (bo jest to ściskanie mimośrodowe), tylko jest przesunięta w bok o odległość e, to z tego wynika moment gnący wynoszący:

Mg = F * e

czyli siła pomnożona przez ramię – przesunięcie punktu jej przyłożenia względem środka podstawy.

 

To teraz jak do tego podejść?

 

Na początek zajmiemy się ściskaniem:

Przekrój poziomy czyli pole podstawy prostopadłościanu:

S = a2

Naprężenia rozciągające:

r = (-F) : a²

A dlatego z minusem ponieważ siła F ściska prostopadłościan wzdłuż wysokości, czyli stara się zmniejszyć jego wysokość.

 

Ściskanie załatwione to teraz kolej na zginanie:

Wskaźnik wytrzymałości na zginanie przekroju poziomego (prostokąta o wymiarach a x a ) :

W = a * a² / 6

Maksymalne naprężenia zginające:

gmax = Mg : W = F * e : [a³ / 6] = 6 * F * 0,25 * a : a³ = F * 1,5 : a²

mimosodowe3

Na powyższym rysunku widać,  to co obliczyliśmy – oba naprężenia występują jednocześnie i sumaryczne maksymalne naprężenie jest sumą obliczonych wartości:

zmax = g + r = F * 1,5 /+ F / a² = 2,5 * F /

Wytrzymałość – skręcanie – zadanie 25

Witam ponownie i dzisiaj kolejne zadanie z wytrzymałości ze skręcania.

Wytrzymałość – zadanie 13 – skręcanie wału
skrecanie8
Mamy tutaj wał o podanym przekroju i długości L.

skrecanie11

Autor zadaje pytanie:

 

OBLICZ KĄT SKRĘCENIA ORAZ MAKSYMALNE NAPRĘŻENIE SKRĘCAJĄCE

 

Po pierwsze

 

Obliczamy położenie środka ciężkości przekroju. Ponieważ przekrój wałka ma pionową oś symetrii, to umieszczamy go w układzie współrzędnych nad osią x, tak żeby oś symetrii przekroju pokrywała się z osią y.

Mechanika – środek ciężkości – zadanie 16
skrecanie9

Współrzędna położenia środka ciężkości wyniesie:

yc = [ 0,5 * π * (2*a)² * (4*2*a / (3*π)) – 0,5*2*a*a*a/3 ] :
: [ 0,5 * π * (2*a)² – 0,5*2*a*a ] = 0,94 * a

W mianowniku mamy całkowite pole przekroju – pole półkola minus pole trójkąta. W liczniku jest po kolei:

– pole półkola razy współrzędna środka ciężkości półkola
czyli
odległość środka ciężkości od osi x
– i to samo dalej czyli minus (bo wycieli z półkola trójkąt) pole trójkąta razy współrzędna jego środka ciężkości

skrecanie10

Po drugie

 

Obliczamy momenty bezwładności przekroju na zginanie. Względem osi xc:
Jxc =  π * (4*a)4 : 128 + 0,5 *  π * (2*a)² * [ (4*2*a / (3* π) )  – 0,94*a ]² +
– [ 2*a* a³ : 36 + 0,5*2*a*a * ( 0,94*a – a/3 )² ] = 5,9 * a4

Powyżej widzimy jak zastosowano twierdzenie Steinera:

Moment bezwładności półkola

plus

jego pole

razy

odległość pomiędzy środkiem ciężkości półkola

a

środkiem ciężkości całego przekroju.

Dalej analogicznie minus i to samo co dotyczy trójkąta. Minus dlatego bo z półkola wycięto trójkąt. I to samo robimy względem osi yc:

Jyc = π * (4*a)4 : 128 – 2 * [ a * a³ : 36 + 0,5 * a * a * (a/3)² ] = 1,4 * a4

Biegunowy moment bezwładności przekroju jest sumą momentów bezwładności względem prostopadłych osi centralnych (w tym przypadku xc i prostopadły do niego yc).
Jo = Jxc + Jyc = 5,9 * a4  + 1,4 * a4  = 7,3 * a4

Maksymalna odległość przekroju od początku układu współrzędnych:
rmax = √[(0,94*a)²+(2*a)²] = a * √[0,94²+2²] = 2,2*a

Wskaźnik wytrzymałości przekroju na skręcanie:
Wo = Jo : rmax = 7,3 * a4 : 2,2 * a = 3,3 * a³

Maksymalne naprężenia skręcające to iloraz momentu przez wskaźnik wytrzymałości przekroju na skręcanie:
τs = M : Wo = M : 3,3 * a³ = 0,3 * M/a³

 

Zgodnie z prawem Hooke dla skręcania Wytrzymałość – prawo Hooke’a dla skręcania – podstawy kąt skręcenia wału wyniesie:

M * L
φ = ————- =
G * Jo

 

M * L
= ——————————- =
G * 7,3 * a4

= 0,14 * M * L / (G*a4)