Układ prętowy statycznie niewyznaczalny – zadanie

Cześć wszystkim i tutaj mamy zadanie z układem prętowym statycznie niewyznaczalnym, gdzie sztywną ramę przymocowano do 3 odkształcalnych prętów, z których każdy leci pionowo.

rozciaganie21 300x225 - Układ prętowy statycznie niewyznaczalny - zadanie
Do ramy przyłożono moment M. Autor zadaje pytanie:

OBLICZ SIŁY W PRĘTACH

Podobne zadanie już się zdarzały w niedalekiej przeszłości

https://blog-student.com/wytrzymalosc-zadanie-26-rozciaganie-uklad-statycznie-niewyznaczalny/

i dzisiaj będziemy postępować analogicznie a więc działamy:

Krok pierwszy
Uwalniamy układ od więzów czyli zastępujemy pręty siłami.

rozciaganie22 300x225 - Układ prętowy statycznie niewyznaczalny - zadanie

Krok drugi
Piszemy równania równowagi.
ΣPiy = S1 + S2 + S3 – m*g = 0
ΣMiA = S2 * L + S3 * 2 * L – m * g * L + M = 0
Jak widać mamy 2 równania i 3 niewiadome ( S1 , S2 oraz S3 ), ponieważ jest to układ prętowy statycznie niewyznaczalny i dlatego potrzebne jest dodatkowe równanie geometryczne.

Krok trzeci
Zakładamy, że wszystkie pręty na których wisi rama wydłużą się, ponieważ jeżeli obciążymy układ momentem M to w jakiś sposób pręty muszą się odkształcić, ponieważ są odkształcalne.
Najbardziej prawdopodobne jest , że każdy z prętów wydłuży się o inną długość, ale na tyle na ile pozwolą na to kształt i wymiary ramy. Różne wydłużenia prętów spowodują, że rama obróci się o niewielki kąt. W wyniku tego punkty mocowania prętów do ramy A, B oraz C przemieszczą się tak jak na rysunku poniżej:

rozciaganie23 300x225 - Układ prętowy statycznie niewyznaczalny - zadanie
Na czerwono jest rama przed odkształceniem i na niebiesko jest rama po odkształceniu.
W ten sposób powstanie punkt , który jest punktem obrotu całej ramy. Oczywiście jest to założenie i w trakcie obliczeń wyjdzie, jak naprawdę odkształcają się pręty.
Teraz już widzimy że punkt A po wydłużeniu prętów stanie się punktem A’ i analogicznie pozostałe 2 punkty – B – B’ oraz C – C’.
I to wszystko wygląda pięknie, tylko że w takiej postaci obliczenie siły w prętach wymagałoby cudu. Dlatego też zastosujemy tutaj proste założenie:

PUNKTY MOCOWANIA PRĘTÓW (A, B ORAZ C) PRZEMIESZCZĄ SIĘ PO PROSTEJ POŁOŻONEJ PIONOWO.

To jest oczywiste i teraz przejdziemy do

Kroku czwartego
Przemieszczenie punku A równa się wydłużeniu pręta 1:
AA’ = ΔL1
i analogicznie dla pozostałych dwóch prętów:
BB’ = ΔL2
CC’ = ΔL3

rozciaganie24 300x225 - Układ prętowy statycznie niewyznaczalny - zadanie
Teraz będzie jeszcze ciekawiej:
– na przedłużeniu odcinka AB powstał punkt D (na przecięciu z prętem 3)
– podobnie na przedłużeniu odcinka A’B’ powstał punkt D’.

rozciaganie25 300x225 - Układ prętowy statycznie niewyznaczalny - zadanie
Ponieważ wszystkie kąty między odcinkami są zachowane, to odcinek CC’ równa się odcinkowi DD’ a co za tym idzie:
DD’ = ΔL3
W taki oto sposób powstał trójkąt o podstawie równej odległości między prętami nr1 i nr3 i wysokości równej ΔL3 – ΔL1.

Tutaj od razu widać, że można zastosować twierdzenie Talesa:
L / (ΔL2-ΔL1) = 2*L / (ΔL3-ΔL1)
Dzielimy obie strony równania przez L:
1 / (ΔL2-ΔL1) = 2 / (ΔL3-ΔL1)
Odwracamy liczniki z mianownikami:
ΔL2 – ΔL1 = 0,5*ΔL3 – 0,5*ΔL1
Do obu stron równania dodajemy 0,5*ΔL1:
ΔL2 – 0,5*ΔL1 = 0,5*ΔL3

Krok piąty
I teraz w to można i trzeba wmanewrować prawo Hooke’a:

 

siła w pręcie x długość pręta
wydłużenie = ——————————————-
moduł Younga x przekrój

Dla kolejnych prętów wydłużenia zgodnie z prawem Hooke’a wyniosą:

 

S1 * L
ΔL1 = ——————–
E * A

 

S2 * L
ΔL2 = ———————
E * A

 

S2 * 2 * L
ΔL3 = ————————-
E * A

 

I to wszystko można teraz wstawić do zależności z twierdzenia Talesa:
ΔL2 – 0,5*ΔL1 = 0,5*ΔL3

S2 * L                 0,5*S1*L               0,5*S3*L
————-   –  ————– = —————
E * A                       E * A                        E * A

Mnożymy obie strony równania przez E*A i dzielimy przez L:
S2 – 0,5 * S1 = 0,5 * S3
Jak połączymy to równanie z dwoma statycznymi, które powstały na początku:
ΣPiy = S1 + S2 + S3 – m*g = 0 [1]
ΣMiA = S2 * L + S3 * 2 * L – m * g * L + M = 0 [2]
S2 – 0,5 * S1 = 0,5 * S3 [3]
to powstanie układ TRZECH równań.

 

Krok szósty

Została czysta matematyka – z układu trzech równań obliczymy szukane siły w prętach

Po przekształceniu równania [3]:
2*S2 – S1 – S3 = 0 [3]
dodajemy stronami do równania [1]:
S1 + S2 + S3 – m*g + 2*S2 – S1 – S3 = 0 [1+3]
S2 – m*g + 2*S2 = 0 [1+3]
3*S2 – m*g = 0 [1+3]
3*S2 = m*g [1+3]
i w ten sposób obliczamy siłę w pręcie nr2:
S2 = 0,33*m*g
Obliczoną wartość wstawiamy do równania [2]:
0,33 * m * g * L + S3 * 2 * L – m * g * L + M = 0
Dzielimy obie strony równania przez 2*L
0,17 * m * g + S3 – 0,5 * m * g + 0,5*M/L = 0
i w ten sposób obliczamy siłę w pręcie nr 3:
S3 = (-0,17) * m * g + 0,5 * m * g – 0,5*M/L=0,33 * m * g – 0,5*M/L
Z równania [1] obliczymy siłę w pręcie nr1 układu prętowego statycznie niewyznaczalnego:
S1 = (-S2) – S3 + m*g = (-0,33*m*g) – 0,33 * m * g + 0,5*M/L + m*g = 0,33 * m * g + 0,5*M/L

Prawda  że łatwe?

Przyspieszenia liniowe i kątowe mas – dynamika – zadanie 37

Witam ponownie i dzisiaj zrobimy zadanie z dynamiki, w którym obliczymy przyspieszenia liniowe i kątowe elementów posiadających masę. W niedalekiej przeszłości zamieściłem podobne zadanie

http://blog-student.com/dynamika-zadanie-7/

Na rysunku widzimy układ krążków, z których większy obraca się wokół punktu A (podpora przegubowa stała) i na na ten krążek nawinięto linkę.

dynamika14 1 1200x900 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37

Drugi koniec linki zamocowano w punkcie A i po drodze lina przechodzi przez mniejszy krążek.
Jak to działa?
Mniejszy krążek ruchem płaskim zjeżdża w dół rozwijając linkę, która jednocześnie obraca dużym krążkiem. Autor zadaje pytanie:

OBLICZ PRZYSPIESZENIA PORUSZAJĄCYCH SIĘ CIAŁ

Po pierwsze

Ustalamy jak wszystko się będzie poruszać

Rysujemy poszczególne przyspieszenia:

dynamika14 150x150 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37

 

dynamika14 1024x768 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37

Duży krążek (masa 2*m) porusza się ruchem obrotowym, czyli dajemy przyspieszenie kątowe ε1, a mały krążek (masa m) porusza się ruchem płaskim (obraca się i jednocześnie zjeżdża w dół odwijając linkę ) czyli dajemy przyspieszenie liniowe a2 (na przykład w dół bo widać gołym okiem, że będzie zjeżdżać w dół) oraz przyspieszenie kątowe ε2.

Po drugie

Uwalniamy od więzów ciała, które mają masę i piszemy równania dynamiczne z II zasady dynamiki Newtona.
Mając na myśli ”ciała które mają masę” mówimy o obu krążkach. Na początek większy krążek poruszający się ruchem obrotowym:
dynamika19 300x225 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37
Zastępujemy linę siłą i piszemy równanie dynamiczne:
S1 * 2 * r = J1 * ε1 [1]
czyli suma momentów

równa się

momentowi bezwładności

razy

przyspieszenie kątowe.

Teraz mały krążek i postępujemy analogicznie:
dynamika17 300x225 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37
zgodnie z III zasadą dynamiki Newtona pojawiła się ta sama siła w linie S1. Ponieważ linka przechodzi przez mały krążek, który POSIADA MASĘ, to z drugiej strony krążka mamy inną siłę oznaczoną S2. Tak jak napisaliśmy wcześniej, mały krążek porusza się ruchem PŁASKIM, w wyniku tego napiszemy 2 równania dynamiczne (dla ruchu POSTĘPOWEGO i dla ruchu OBROTOWEGO):
S1 * r – S2 * r = J2 * ε2 [2]
m * g – S1 – S2 = m * a2 [3]

Po trzecie

Piszemy masowe momenty bezwładności dla obu krążków:
J1 = 1/2 * 2*m * (2*r)²
J2 = 1/2 * m * r²

Po czwarte

Liczymy niewiadome występujące w 3 równaniach dynamicznych:
S1, ε1, S2, ε2, a2
a więc mamy 5 niewiadomych i 3 równania. Musimy stworzyć 2 związki kinematyczne.

A więc do dzieła:

Mniejszy krążek porusza się ruchem płaskim i posiada chwilowy środek obrotu w punkcie B. Mówiąc prościej, linka między punktami A i B wisi sobie nieruchomo, a to znaczy, że punkt B też jest nieruchomy . Punkt B jednocześnie jest punktem na lince i punktem na krążku. Jeżeli jest taki punkt na krążku, który jest chwilowo nieruchomy, to jest to CHWILOWY ŚRODEK OBROTU. Jest taka zależność, która wiąże przyspieszenia liniowe i kątowe:
a2 = ε2 * r [4]

Jest pierwszy związek kinematyczny, to teraz narysujmy sobie rozkład przyspieszeń na mniejszym krążku (to co poniżej jest zaznaczone na czerwono):
DYNAMIKA18 300x225 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37
Teraz jak się spojrzy na powyższy obrazek, to widać, że:
– w punkcie B mamy przyspieszenie równe zero (mówiąc inaczej jest to chwilowy środek obrotu),
– środek małego krążka porusza się z przyspieszeniem a2
– idąc dalej w prawo po średnicy małego krążka napotykamy na punkt C i widać, że on ma DWA RAZY większe przyspieszenie niż środek krążka ( 2*a2 ). To samo przyspieszenie ma punkt D na dużym krążku i można je zapisać inaczej i analogicznie do równania [4]:
2 * a2 = ε1 * 2 * r [5]
W ten sposób powstał układ 5 równań, z którego obliczymy 5 niewiadomych:
S1 * 2 * r = 1/2 * 2*m * (2*r)² *ε1 [1]
S1 * r – S2 * r = 1/2 * m * r² * ε2 [2]
m * g – S1 – S2 = m * a2 [3]
a2 = ε2 * r [4]
2 * a2 = ε1 * 2 * r [5]

S1 = m * 2*r *ε1 [1]
S1 – S2 = 1/2 * m * r * ε2 [2]
m * g – S1 – S2 = m * a2 [3]
a2 = ε2 * r [4]
a2 = ε1 * r [5]

Przyrównujemy do siebie równania [4] i [5]
ε2 * r [4]= ε1 * r [5]
ε2 = ε1

S1 = m * 2*r *ε1 [1]
S1 – S2 = 1/2 * m * r * ε2 [2]
m * g – S1 – S2 = m * a2 [3]
ε2 * r = ε1 * r [4] i [5] ==> ε2 = ε1

Odejmujemy stronami równania [1] oraz [2]:
S2 =1,5*m*r *ε1 [1 minus 2]

To co wyszło wraz z równaniem [1] wstawiamy do równania[3]
m * g – m * 2*r *ε1 – 1,5*m*r *ε1 = m * ε1 * r [3]
g = 4,5* ε1 * r [3]

Przyspieszenie kątowe dużego krążka (o masie 2*m) wyniesie:
ε1 = 0,22*g /r

a przyspieszenie liniowe małego krążka:
a2 = ε2 * r = ε1 * r = [0,22*g /r] * r = 0,22*g

Przyspieszenie kątowe małego krążka:
ε2 = ε1 = 0,22*g / (ε1*r)

Wskaźnik wytrzymałości przekroju na zginanie – wytrzymałość

Cześć wszystkim i dzisiaj powiemy coś o wskaźniku wytrzymałości przekroju na zginanie. Wiąże się on bardzo mocno z omawianym niedawno momentem bezwładności.

http://blog-student.com/moment-bezwladnosci-przekroju-zadanie-36/

Nie może być zbyt teoretycznie i dlatego powiedzmy sobie, co to jest ten wskaźnik wytrzymałości przekroju na zginanie:

A więc to taka cecha przekroju (na przykład przekroju poprzecznego belki) która opisuje kształt i wymiary przekroju. Dlatego jest tu mowa o kształcie i wymiarach przekroju, ponieważ te cechy wpływają na wytrzymałość przykładowej belki na zginanie.

Żeby obliczyć wskaźnik na zginanie po pierwsze musimy znać moment bezwładności przekroju i wynosi on na przykład Jxc. Wtedy wskaźnik wytrzymałości będzie równy:

ilorazowi

momentu bezwładności

przez

odległość od osi centralnej do najdalszego punktu przekroju:
Wx = Jxc : ymax
wskazniknazginanie1 300x225 - Wskaźnik wytrzymałości przekroju na zginanie - wytrzymałość
Miarą wskaźnika wytrzymałości na zginanie jest metr do potęgi trzeciej lub milimetr do potęgi trzeciej [m³ lub mm³].
Dla przykładu możemy policzyć taki wskaźnik dla przekroju kwadratowego o boku a. Moment bezwładności wyniesie:
Jxc = a * a³ / 12
Wobec tego wskaźnik wytrzymałości przekroju na zginanie:
Wx = Jxc / ymax = (a * a³ / 12) / (a/2) = a³ / 6
wskazniknazginanie2 300x225 - Wskaźnik wytrzymałości przekroju na zginanie - wytrzymałość
Ponieważ środek ciężkości kwadratu jest w połowie jego wysokości, to najdalszy punkt przekroju ymax oddalony od osi centralnej równa się połowie wysokości czyli a/2.

I to na razie tyle a wkrótce wykorzystamy wiedzę o wskaźniku na zginanie w zadaniach.

Moment bezwładności przekroju i twierdzenie Steinera – zadanie 36

Witam ponownie i dzisiaj zrobimy zadanie ze środków ciężkości i momentów bezwładności używając twierdzenia Steinera.
Mamy taki przekrój jak widać na rysunku – dwa półkola złożone w taki oto ciekawy sposób.

srodekciezkosci5 300x225 - Moment bezwładności przekroju i twierdzenie Steinera - zadanie 36

Oto jakie pytanie zadaje autor:

OBLICZ POŁOŻENIE ŚRODKA CIĘŻKOŚCI I MOMENT BEZWŁADNOŚCI PRZEKROJU

Na początek obliczymy współrzędne położenia środka ciężkości:

 

Po pierwsze

Podobnie jak w poprzednim zadaniu

http://blog-student.com/mechanika-srodek-ciezkosci-zadanie-16/

Dzielimy figurę na prostsze elementy

Tutaj sprawa jest oczywista – półkole o promieniu a i drugie półkole o promieniu a.

srodekciezkosci6 300x225 - Moment bezwładności przekroju i twierdzenie Steinera - zadanie 36

Oczywiście znamy położenie środka ciężkości takich elementarnych figur jak półkole.

 

Po drugie

 Umieszczamy tak podzieloną figurę w układzie współrzędnych.

Tylko teraz powstaje pytanie, jak to umieścić?
Figura NIE JEST symetryczna i dlatego umieszczamy ją w pierwszej ćwiartce układu współrzędnych, żeby wszystkie współrzędne były na plusie.

srodekciezkosci7 300x225 - Moment bezwładności przekroju i twierdzenie Steinera - zadanie 36

Po trzecie

Kolejny etap to:

Działamy według prostego wzoru:

 

pole półkola1 * ś.c.półkola1 + pole półkola2 * ś.c.półkola2
xc = ——————————————————-
całkowite pole figury

 

i zaczniemy od współrzędnej x:

 

    0,5 * π * a2 * (a – 4*a/(3*π)) + 0,5 * π * a2 * (a + 4*a/(3*π))
xc = —————————————————-=
2 * 0,5 * π * a2

= a

 

To teraz mały komentarz do powyższego wzoru:

srodekciezkosci8 300x225 - Moment bezwładności przekroju i twierdzenie Steinera - zadanie 36
Środek ciężkości elementu składowego przekroju (w tym przypadku półkola) określamy w tym układzie współrzędnych, w którym tę figurę wstawiliśmy. Wiemy, że środek ciężkości półkola znajduje się 4*a/(3*π) od podstawy i jednocześnie w osi symetrii. Czyli w naszym przypadku środek ciężkości jednego półkola przypada w a – 4*a/(3*π), a drugiego półkola wypadnie w a + 4*a/(3*π)) (ilustracja powyżej).
To teraz przejdziemy do współrzędnej y:

0,5 * π * a2 * a + 0,5 * π * a2 * 2 * a
yc = ————————————————- = 1,5 * a
2 * 0,5 * π * a2

 

Po czwarte

 Wykorzystując twierdzenie Steinera

http://blog-student.com/twierdzenie-steinera-podstawy/

obliczymy momenty bezwładności przekroju.

Zaznaczam, że po to obliczyliśmy położenie środka ciężkości, żeby przez ten środek ciężkości przeprowadzić osie CENTRALNE xc i yc. I teraz w kolejnym kroku działamy WYŁĄCZNIE w układzie współrzędnych xc,yc. No to do dzieła:
Ten podział na 2 półkola dalej jest aktualny, a więc moment bezwładności przekroju będzie sumą momentów bezwładności jednego półkola plus drugiego półkola:
Jxc = π * (2*a)4 / 128 + 0,5 * π * a² * (1,5*a – a)² + π * (2*a)4 / 128 + 0,5 * π * a² * (1,5*a – 2*a) ² =
= π * 16 * a4 / 128 + 0,5 * π * a² * (0,5*a)² + π * 16 * a4 / 128 + 0,5 * π * a² * (0,5*a) ² = 0,5 * π * a4

O twierdzeniu Steinera już było, ale taki drobny komentarz do powyższych obliczeń:
Jasna sprawa że π*(2*a)4/128 oznacza moment bezwładności półkola.

srodekciezkosci9 300x225 - Moment bezwładności przekroju i twierdzenie Steinera - zadanie 36

Następnie 0,5 * π * a² oznacza pole półkola i ostatnia cząstka (1,5*a – a) to odległość środka ciężkości pierwszego półkola od osi centralnej całego przekroju (to pokazałem na powyższym szkicu). Teraz moment bezwładności względem osi yc i działamy analogicznie czyli stosujemy twierdzenie Steinera:
Jyc = π * (2*a)4 / 128 + 0,5 * π * a² * (a – 4*a/(3*π) – a) ² +
+ π * (2*a)4 / 128 + 0,5 * π * a² * (a – 4*a/(3*π) + a) ² = 6,4 * a4

Prawda że proste?

Twierdzenie Steinera i moment bezwładności przekroju

Witam wszystkich i dzisiaj przy okazji momentów bezwładności przekrojów będzie o twierdzeniu Steinera . Już mówię, co to oznacza:

Wielokrotnie w mechanice i wytrzymałości spotykamy się z przekrojami na przykład z przekrojami zginanych belek czy skręcanych wałów. Taki przekrój może być prostokątem, kołem trójkątem lub dowolną kombinacją wymienionych figur. Każdy przekrój posiada środek ciężkości (o czym już było niedawno) oraz moment bezwładności.
To może wystarczy tego wstępu, bo o momencie bezwładności przekroju dzisiaj będzie. Przypomnę, że jest to taka wielkość opisująca figurę, która mówi, w jaki sposób jest ona położona względem osi układu współrzędnych. Jeżeli ta oś przechodzi przez środek ciężkości przekroju to nazywa się

OSIĄ CENTRALNĄ.

Momenty bezwładności podstawowych figur względem osi centralnych można znaleźć w literaturze i kilka przykładów zamieszczam poniżej
momentbezwladnisci1 1 - Twierdzenie Steinera i moment bezwładności przekroju
Wszystko pięknie tylko często potrzeba obliczyć moment bezwładności przekroju względem osi x równoległej do CENTRALNEJ xc ale NIE PRZECHODZĄCEJ przez środek ciężkości przekroju. I na to gotowych wzorów nie ma, ale z pomocą przychodzi twierdzenie Steinera.
momentbezwladnosci2 1 - Twierdzenie Steinera i moment bezwładności przekroju
Nawiązując do powyższego rysunku mamy dane:
– moment bezwładności przekroju względem osi centralnej Jxc (na przykład może to być trójkąt, koło lub inna figura)
– pole figury S
– odległość miedzy osią centralna xc a równoległą do niej osią x którą oznaczono a .
I teraz uwaga:
Moment bezwładności względem osi x wyniesie:

J = Jxc + S * a²

Prawda że łatwe?