Statyka-zadanie 8

Dobrze będzie teraz powrócić do statyki i teraz zrobimy takie zadanie:

Jest sobie belka oparta na dwóch podporach (w punktach A i B) – to tak jakby ktoś wziął szynę tramwajową i położył na dwóch cegłach.

W punkcie A jest podpora PRZEGUBOWA STAŁA czyli pozwalająca tylko na obrót belki wokół punktu A. A więc lewy koniec belki NIE MOŻE pojechać ani w pionie ani w poziomie.

W punkcie B jest podpora PRZEGUBOWA PRZESUWNA (bo widać tutaj dwie poziome kreski) pozwalająca na obrót belki wokół punktu B oraz przesuw poziomy (poziomy bo są dwie poziome kreski). A więc w punkcie B belka NIE MOŻE pojechać w pionie.

Teraz uwalniamy belkę od więzówstatyka5

czyli zastępujemy dwie podpory (A i B) siłami . Jak napisano trochę wcześniej lewy koniec belki (w punkcie A) NIE MOŻE pojechać ani w pionie ani w poziomie i dlatego rysujemy DWIE reakcje (pionową i poziomą – nieważne czy prawo czy lewo i czy góra czy dół) działające na belkę. Krótko mówiąc reakcje działające na belkę pokazują, w którą stronę belka NIE MOŻE pojechać.

Tak samo w punkcie B rysujemy reakcję pionową bo w pionie belka NIE MOŻE pojechać.

Teraz kolej na równania równowagi. Ponieważ wszystkie siły leżą na płaszczyźnie i nie przecinają się w jednym punkcie to jest to układ sił PŁASKI ROZBIEŻNY. Dla układu płaskiego rozbieżnego piszemy TRZY równania równowagi:

suma rzutów sił na oś poziomą (przeważnie x)

i na oś pionową (przeważnie y)

oraz moment sił względem dowolnego punktu.

Na jednej osi wszystko wytłumaczymy i dalej wszystko będzie bardzo proste. Suma rzutów sił na oś x to suma wszystkich sił poziomych i rzutów sił poziomych.

Z sumy rzutów sił na oś x:

Pix = (-RAx) – F1*cos = 0 [1]

Z sumy rzutów sił na oś y:

Piy = RAy – F1*sin+ F2 + F3 + RB = 0 [2]

Z sumy momentów względem punktu A:

MiA = F1*sin*1 – F2*2 – RB*4 – F3*5 = 0 [3]

Przekształcając równanie [3] otrzymujemy:

4*RB = F1*sin*1 – F2*2 – F3*5

Reakcja w podporze przegubowej przesuwnej wynosi:

RB = 0,25*F1*sin – 0,5*F2 – 1,25*F3

Z [2] równania obliczymy reakcję pionową w podporze przegubowej stałej:

RAy = F1*sin– F2 – F3 – RB

Z równania [1] obliczymy reakcję poziomą w lewej podporze:

RAx = (-F1)*cosα

Kolejne trudniejsze zadania w następnym odcinku

 

Dynamika- zadanie 7

Witam ponownie i ponownie mamy proste zadanko z dynamiki:

 

Do nieważkiego bębna o promieniu r przyłożono moment Mo. Na obu końcach cięgna nawiniętego na bęben zawieszono 2 masy m. Pomiędzy cięgnem a bębnem nie ma poślizgu.

dynamika4

Ile wyniosą przyspieszenia poruszających się mas?

 

Tyle wiadomo  teraz żeby się do tego zabrać to na wstępie:

Trzeba założyć, w jaki sposób to wszystko się będzie poruszać.

Przyłożony moment obraca kołem zgodnie ze wskazówkami zegara, czyli można się domyśleć, że lewe pudło pojedzie w górę, a prawe pudło będzie zjeżdżać w dół. Ponieważ oba pudła są połączone nierozciągliwą liną, to jedno i drugie pudło będzie się poruszać z takim samym przyspieszeniem.

W drugim kroku trzeba uwolnić od więzów wszystkie ciała, które mają masę, czyli to będzie lewe pudło i prawe pudło.dynamika5

Uwalniamy od więzów, czyli zastępujemy linę siłą napięcia S1 i ponieważ ciało posiada masę to w środku ciężkości przykładamy siłę ciężkości m*g. Z poprzedniego kroku zakładamy przyspieszenie ciała w górę.

Trzeci krok to jeżeli pudło uwolniliśmy od więzów to teraz piszemy równania dynamiczne pochodzące z II prawa dynamiki Newtona:
ILOCZYN MASY CIAŁA I JEGO PRZYSPIESZENIA RÓWNA SIĘ SUMIE PRZYŁOŻONYCH DO NIEGO SIŁ.
Należy zaznaczyć że siły leżą na kierunku przyspieszenia:
m * p = S1 – m*g [1]

dynamika6

Analogicznie postępujemy z drugim pudłem czyli siłę w linie zastępujemy siłą S2 i przykładamy ciężar m*g. Równianie dynamiczne przyjmie postać:

m * p = m*g – S2 [2]

Mamy 2 równania dynamiczne i teraz liczymy niewiadome:
p , S1 , S2
czyli 3 niewiadome i 2 równania a więc potrzebne jest dodatkowe równanie dynamiczne lub kinematyczne. I tutaj warto wykorzystać krążek, do którego przyłożono moment – dla niego napiszemy równanie dynamiczne dla ruchu obrotowego:

dynamika3

J * e = S2 * r + Mo – S1 * r [3]

Wiadomo że moment bezwładności krążka wynosi zero, ponieważ krążek jest nieważki:
J = 0
I wiadomo, jaka jest relacja między przyspieszeniami:
– kątowym bębna
– i liniowym pudła:
p = ε * r
I z tego obliczymy przyspieszenie kątowe krążka:
ε = p : r
I teraz to co powyżej wstawiamy do równania [3]:
0 * p/r = S2 * r + Mo – S1 * r

0 = S2 * r + Mo – S1 * r [3]

To jak już mamy 3 równania, to przyrównujemy stronami równania [1] i [2]:
S1 – m*g = m*g – S2
S1 = 2*m*g – S2 [1+2]

Z równania [3] wyciągamy siłę w linie S1:
S1 * r = S2 * r + Mo
S1 = S2 + Mo/r  [3]

Równania [1+2] oraz [3] odejmujemy stronami:
S1 – S1 = 2*m*g – S2 – S2 – Mo/r
0 = 2*m*g – 2*S2 – Mo/r
0 = m*g – S2 – 0,5*Mo/r
S2 = m*g – 0,5*Mo/r

Z równania [1] wyciągamy p, podstawiamy obliczone powyżej S2 i od razu dostajemy szukane przyspieszenie:
p = g – S2/m = g – ( m*g – 0,5*Mo/r )/m = g – ( g – 0,5*Mo/(r*m) )  =
= 0,5*Mo/(r*m)

Dynamika-zadanie 6

To może teraz zadanie z dynamiki takie oto:

NA POZIOMYM STOLE NA KARTCE LEŻY PUDEŁKO O MASIE m. WSPÓŁCZYNNIK TARCIA MIĘDZY KARTKĄ I PUDEŁKIEM WYNOSI µdynamika1

I jak wiemy co tu się dzieje to teraz jest takie pytanie:

Z JAKIM PRZYSPIESZENIEM NALEŻY RUSZYĆ KARTKĄ, ŻEBY PUDEŁKO ZJECHAŁO Z KARTKI?

Czyli tradycyjnie uwalniamy pudełko od więzów, czyli zastępujemy kartkę siłami:

– nacisku

– i tarcia ponieważ jest dany współczynnik tarcia 

dynamika2

Siła tarcia jest w tą stronę co przyspieszenie ponieważ pudełko będzie chciało zjechać w stronę przeciwną – siła tarcia jest zawsze przeciwna do ruchu który ma nastąpic – przeszkadza ruchowi.

No i teraz piszemy równania dynamiczne:

Równanie w kierunku zgodnym z przyspieszeniem:

m * p = N * µ [1] 

Równanie w kierunku prostopadłym do przyspieszenia:

m * 0 = N – m*g [2]

Z drugiego równania obliczamy nacisk:

N = m*g

i wstawiamy do równania [1]:

m * p = m * g * µ

Dzielimy obie strony równania przez m i dostajemy przyspieszenie z jakim należy ruszyć kartką żeby pudełko zjechało z kartki:

p = g * µ 

Wytrzymałość-rozciąganie-zadanie 5

Poprzednio rozpoczęliśmy podstawy wytrzymałości a teraz może zadanie z rozciągania:

rozciaganie1

  Mamy dane przekroje pręta A, moduł Younga E, siłę P i długość l. Pytają się o reakcje utwierdzenia w suficie i podłodze

O co tutaj chodzi? Ktoś wziął pręt o zmiennym przekroju, jednym końcem przyspawał do podłogi, a górnym końcem przyspawał do sufitu. Jak widać na rysunku całą wysokość pręta podzielono na 3 przedziały i na granicy pierwszego i drugiego oraz drugiego i trzeciego przedziału przyłożono siły 4*P oraz P.

Po pierwsze uwalniamy słup od więzów, czyli zastępujemy sufit i podłogę siłami utwierdzenia obojętnie w którą stronę, ale później się tego trzymamy.

Gdy są już reakcje utwierdzenia to można napisać sumę rzutów sił na oś y, która leży w pionie (w osi słupa):

Piy = P + S1 – 4*P – S2 = 0

Przyjmujemy że siła do góry jest z PLUSEM a siła w dół jest z MINUSEM. Potem można powyższe równanie uprościć i dostaniemy to co poniżej:

Piy = S1 – 3*P – S2 = 0 (1)

W tym równaniu są 2 niewiadome: S1 i S2. Aby je obliczyć musi być kolejne równanie. Tym razem GEOMETRYCZNE mówiące, że

suma wydłużeń poszczególnych odcinków (a są trzy i każdy o długości l) musi być równa ZERO.

To jest tak, że jak pierwszy odcinek wydłuży się o 1mm, drugi odcinek wydłuży się o 2mm, to trzeci odcinek skróci się o 3mm.A to dlatego że odległość między podłogą i sufitem zawsze będzie 3*l:

l1 + l2 + l3 = 0

gdzie l to poszczególne wydłużenia poszczególnych odcinków

Teraz trzeba użyć prawa Hooke’a które mówi:

siła * długość pręta

wydłużenie      =    ————————————————————————–

moduł Younga * pole przekroju

Ponieważ mamy 3 przedziały, to w każdym z nich musimy określić siłę rozciągającą czyli siłę normalną. Żeby sobie ułatwić to można użyć kawałka kartki, którym będziemy zakrywać część słupa.

Dla pierwszego przedziału (patrząc od góry) zakrywamy tak, żeby widzieć kawałek tego pierwszego przedziału. Teraz przepisujemy siły, które widzimy – no i widzimy S1:

N1 = S1

Następnie odsłaniamy trochę więcej słupa w taki sposób, żeby widzieć pierwszy przedział (licząc od góry) i kawałek drugiego przedziału. I oto co widzimy:

N2 = S1 – 4*P

W kolejnym kroku odsłaniamy jeszcze więcej słupa, tak żeby całkowicie widzieć pierwszy i drugi przedział (licząc od góry) oraz kawałek trzeciego. Siły normalne w trzecim przedziale:

N3 = S1 – 4*P + P = S1 – 3*P

Teraz już mając siły w poszczególnych przedziałach (N), długości tych przedziałów (l), moduł Younga (E) oraz przekroje (A) w każdym z przedziałów można to wszystko wstawić do prawa Hooke i równania geometrycznego:

N1*l             N2*l              N3*l

———- + ————– + ————- = 0

E*2*A         E*2*A            E*A

Po wstawieniu wartości sił normalnych wyjdzie coś takiego:

S1*l            (S1-4*P)*l            (S1-3*P)*l

———- + ——————– + ——————– = 0

E*2*A              E*2*A                   E*A

Teraz dobrze będzie to wszystko uprościć, czyli mnożymy obie strony przez (E*A) i dzielimy przez l:

S1             (S1-4*P)        S1-3*P

—– + —————— + —————- = 0 (2)

2                   2                    1

Z tego wszystkiego można wyciągnąć reakcję utwierdzenia S1:

2*S1 = 5*P

S1 = 2,5*P

Reakcję S1 wstawiamy do sumy rzutów na oś y i obliczamy z tego S2:

S1 – 3*P – S2 = 0

S1 – 3*P = S2

S2 = 2,5*P – 3*P = (-0,5*P)

Reakcje utwierdzenia wynoszą: S1 = 2,5*P oraz S2 = (-0,5*P).

 

Wytrzymałość materiałów-ponownie podstawy

Nie tak dawno omawialiśmy podstawy mechaniki, a teraz dobrze będzie płynnie przejść do wytrzymałości materiałów, gdzie wiedza z mechaniki bardzo się przyda.

Wytrzymałość wcale nie jest tak skomplikowana jak niektórzy ją malują i zajmuje się:

–  siłami działającymi na ciała

– i wywołanymi tym naprężeniami i odkształceniami.

Można tę wiedzę podzielić na kilka prostych rozdziałów:

– rozciąganie

– zginanie

– skręcanie

– ścinanie

Z ROZCIĄGANIEM jest bardzo prosto, bo to jest tak jakbyśmy złapali za 2 końce sznurka (albo jeszcze lepiej gumy) i próbowali go rozerwać. I zanim się uda go rozerwać to na początku delikatnie się rozciągnie, chociaż może na oko tego nie widać (albo widać jeżeli weźmiemy gumę).

I tu dochodzimy do bardzo ważnego prawa HOOKE’a , które opisuje:

O ILE ROZCIĄGNIE SIĘ COŚ POD WPŁYWEM SIŁY ROZCIĄGAJĄCEJ S.

To o ile się rozciągnie nazywają wydłużeniem. W najprostszym ujęciu wydłużenie jest równe:

 

                  S * L

l  =  —————-

          E * A

 

gdzie:

L – długość sznurka albo gumy lub pręta

E – moduł Younga

A – przekrój poprzeczny

Długość sznurka nie wymaga komentarza ale należy powiedzieć słowo o module Younga, który opisuje sprężystość materiału. Jeden materiał można łatwo rozciągać (jak na przykład guma), a inny materiał nie bardzo się nadaje do rozciągania – na przykład beton. No i na końcu mamy przekrój poprzeczny czyli pole przekroju.

To tyle wstępu na temat ROZCIĄGANIA a następnym razem zrobimy jakieś proste zadanie, żeby to jeszcze lepiej zrozumieć.

Kinematyka-zadanie 4-obliczenie przyspieszenia w ruchu płaskim

No to mamy zadanie następujące:

OBLICZYĆ PUNKTU A WALCA O PROMIENIU r PORUSZAJĄCEGO SIĘ RUCHEM PŁASKIM

Tutaj będzie znacznie lepsza zabawa niż przy obliczaniu prędkości punktu i dlatego, zanim przejdziemy do zadania, trzeba się odwołać do podstaw:
Załóżmy czy COŚ jedzie po okręgu o promieniu R i z prędkością Vp i wtedy MOGĄ wystąpić 2 różne przyspieszenia:

– PRZYSPIESZENIE STYCZNE – którego wektor jest STYCZNY do toru ruchu (czyli śladu który robi punkt kiedy sobie jedzie – jak jedzie po łuku to robi łuk). Jest ono równe – UWAGA – pochodnej prędkości po czasie, a znaczy to tyle, że jeżeli prędkość się nie zmienia to przyspieszenie styczne jest równe zero.

– PRZYSPIESZENIE NORMALNE  którego wektor jest skierowany do środka łuku i jest ono równe:
pn = Vp² : R

Streszczając to co jest napisane w powyższych 2 punktach

przyspieszenie styczne występuje kiedy prędkość się zmienia,

a przyspieszenie normalne występuje gdy ciało porusza się po łuku.

mechanika wstep 4

Jak już wiadomo jakie są rodzaje przyspieszeń, to można obliczyć przyspieszenie punktu A i zrobimy to METODĄ BIEGUNA. A co to znaczy:
pa = po + pa/o
Znaczy to tyle, że przyspieszenie punktu A jest sumą 2 wektorów przyspieszeń:
– WEKTORA przyspieszenia środka – punktu O – w tym przypadku punkt O wybraliśmy jako BIEGUN
– oraz WEKTORA przyspieszenia punktu A względem środka

I żeby było jeszcze śmieszniej to każdy z powyższych 2 wektorów MOŻE (ALE NIE MUSI) mieć składową styczną i składową normalną. To teraz można zapisać to wszystko w jednym równaniu (oczywiście wektorowo):
pa = pot + pon + pa/ot + pa/on
Przyspieszenie styczne środka będzie równe zero
pot = 0
ponieważ koło jedzie w prawo ze stałą prędkością.

Podobnie przyspieszenie styczne punktu A względem środka będzie równe zero
pa/ot = 0
ponieważ punkt A porusza się względem środka ze stałą prędkością.

Wobec tego sumaryczne przyspieszenie punktu A wyniesie (wektorowo):
pa = pon + pa/on
To teraz trzeba obliczyć poszczególne składniki:
Przyspieszenie normalne środka:
pon = ω² * r
Analogicznie obliczymy przyspieszenie punktu A względem środka:
pa/on = ω² * r

kinematyka1

A więc mamy 2 wektory przyspieszenia i teraz musimy je dodać.
Najprościej będzie to zrobić METODĄ RÓWNOLEGŁOBOKU:
Ustawiamy oba wektory tak, że wychodzą z jednego punktu (wierzchołka równoległoboku) i teraz widać, że tym równoległobokiem (w tym przypadku) jest zwykły prostokąt.

kinematyka2

Suma obu wektorów będzie przekątną wychodzącą z tego samego wierzchołka co 2 pozostałe. I teraz widać, że można do tego użyć twierdzenia Pitagorasa:
pa = [pon² + pa/on² ] ˆ1/2

(do potęgi 1/2 bo jest to pod pierwiastkiem)

Czyli podsumowując:

  • najpierw obliczamy poszczególne składowe przyspieszenia
  • a następnie dodajemy wektory składowych i suma będzie przyspieszeniem punktu

Praca i energia-zadanie 3

Na początku była mowa o podstawach i również o pracy i energii i dobrze będzie te podstawy przypomnieć w praktyce czyli na prostym zadaniu.

Mamy takie zadanie z pracy i energii:

JAKĄ PRACĘ TRZEBA WYKONAĆ, ABY PRZEWRÓCIĆ NA BOK SZEŚCIAN O BOKU a I MASIE m ?

I na rysunku poniżej widać tę sytuację:

energia 1

I to jest bardzo proste: wystarczy przechylić sześcian, żeby stanął na kancie (lub KRAWĘDZI) i dalej już poleci sam i przewróci sią na bok. Jedyna praca jaką trzeba wykonać to postawić sześcian na krawędzi. Żeby postawić sześcian na krawędzi to trzeba podnieść środek ciężkości o pewną wysokość – RÓŻNICĘ MIĘDZY POŁOWĄ BOKU A POŁOWĄ PRZEKĄTNEJ – widać to na załączonym szkicu POWYŻEJ. Jedyna czemu trzeba przeciwdziałać to siła ciężkości – trzeba pokonać pracę siły ciężkości, która działa w dół. Czyli praca wynosi:

SIŁA CIĘŻKOŚCI x PIONOWE PRZESUNIĘCIE ŚRODKA CIĘŻKOŚCI

L = m * g * [ 0,5 * a * 2ˆ1/2 – 0,5 * a ]

W nawiasie ta pierwsza cząstka to połowa przekątnej (przekątna kwadratu to bok razy pierwiastek z 2) , a druga cząstka to połowa boku.