Przyspieszenia liniowe i kątowe mas – dynamika – zadanie 37

Witam ponownie i dzisiaj zrobimy zadanie z dynamiki, w którym obliczymy przyspieszenia liniowe i kątowe elementów posiadających masę. W niedalekiej przeszłości zamieściłem podobne zadanie

http://blog-student.com/dynamika-zadanie-7/

Na rysunku widzimy układ krążków, z których większy obraca się wokół punktu A (podpora przegubowa stała) i na na ten krążek nawinięto linkę.

dynamika14 1 1200x900 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37

Drugi koniec linki zamocowano w punkcie A i po drodze lina przechodzi przez mniejszy krążek.
Jak to działa?
Mniejszy krążek ruchem płaskim zjeżdża w dół rozwijając linkę, która jednocześnie obraca dużym krążkiem. Autor zadaje pytanie:

OBLICZ PRZYSPIESZENIA PORUSZAJĄCYCH SIĘ CIAŁ

Po pierwsze

Ustalamy jak wszystko się będzie poruszać

Rysujemy poszczególne przyspieszenia:

dynamika14 150x150 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37

 

dynamika14 1024x768 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37

Duży krążek (masa 2*m) porusza się ruchem obrotowym, czyli dajemy przyspieszenie kątowe ε1, a mały krążek (masa m) porusza się ruchem płaskim (obraca się i jednocześnie zjeżdża w dół odwijając linkę ) czyli dajemy przyspieszenie liniowe a2 (na przykład w dół bo widać gołym okiem, że będzie zjeżdżać w dół) oraz przyspieszenie kątowe ε2.

Po drugie

Uwalniamy od więzów ciała, które mają masę i piszemy równania dynamiczne z II zasady dynamiki Newtona.
Mając na myśli ”ciała które mają masę” mówimy o obu krążkach. Na początek większy krążek poruszający się ruchem obrotowym:
dynamika19 300x225 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37
Zastępujemy linę siłą i piszemy równanie dynamiczne:
S1 * 2 * r = J1 * ε1 [1]
czyli suma momentów

równa się

momentowi bezwładności

razy

przyspieszenie kątowe.

Teraz mały krążek i postępujemy analogicznie:
dynamika17 300x225 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37
zgodnie z III zasadą dynamiki Newtona pojawiła się ta sama siła w linie S1. Ponieważ linka przechodzi przez mały krążek, który POSIADA MASĘ, to z drugiej strony krążka mamy inną siłę oznaczoną S2. Tak jak napisaliśmy wcześniej, mały krążek porusza się ruchem PŁASKIM, w wyniku tego napiszemy 2 równania dynamiczne (dla ruchu POSTĘPOWEGO i dla ruchu OBROTOWEGO):
S1 * r – S2 * r = J2 * ε2 [2]
m * g – S1 – S2 = m * a2 [3]

Po trzecie

Piszemy masowe momenty bezwładności dla obu krążków:
J1 = 1/2 * 2*m * (2*r)²
J2 = 1/2 * m * r²

Po czwarte

Liczymy niewiadome występujące w 3 równaniach dynamicznych:
S1, ε1, S2, ε2, a2
a więc mamy 5 niewiadomych i 3 równania. Musimy stworzyć 2 związki kinematyczne.

A więc do dzieła:

Mniejszy krążek porusza się ruchem płaskim i posiada chwilowy środek obrotu w punkcie B. Mówiąc prościej, linka między punktami A i B wisi sobie nieruchomo, a to znaczy, że punkt B też jest nieruchomy . Punkt B jednocześnie jest punktem na lince i punktem na krążku. Jeżeli jest taki punkt na krążku, który jest chwilowo nieruchomy, to jest to CHWILOWY ŚRODEK OBROTU. Jest taka zależność, która wiąże przyspieszenia liniowe i kątowe:
a2 = ε2 * r [4]

Jest pierwszy związek kinematyczny, to teraz narysujmy sobie rozkład przyspieszeń na mniejszym krążku (to co poniżej jest zaznaczone na czerwono):
DYNAMIKA18 300x225 - Przyspieszenia liniowe i kątowe mas - dynamika - zadanie 37
Teraz jak się spojrzy na powyższy obrazek, to widać, że:
– w punkcie B mamy przyspieszenie równe zero (mówiąc inaczej jest to chwilowy środek obrotu),
– środek małego krążka porusza się z przyspieszeniem a2
– idąc dalej w prawo po średnicy małego krążka napotykamy na punkt C i widać, że on ma DWA RAZY większe przyspieszenie niż środek krążka ( 2*a2 ). To samo przyspieszenie ma punkt D na dużym krążku i można je zapisać inaczej i analogicznie do równania [4]:
2 * a2 = ε1 * 2 * r [5]
W ten sposób powstał układ 5 równań, z którego obliczymy 5 niewiadomych:
S1 * 2 * r = 1/2 * 2*m * (2*r)² *ε1 [1]
S1 * r – S2 * r = 1/2 * m * r² * ε2 [2]
m * g – S1 – S2 = m * a2 [3]
a2 = ε2 * r [4]
2 * a2 = ε1 * 2 * r [5]

S1 = m * 2*r *ε1 [1]
S1 – S2 = 1/2 * m * r * ε2 [2]
m * g – S1 – S2 = m * a2 [3]
a2 = ε2 * r [4]
a2 = ε1 * r [5]

Przyrównujemy do siebie równania [4] i [5]
ε2 * r [4]= ε1 * r [5]
ε2 = ε1

S1 = m * 2*r *ε1 [1]
S1 – S2 = 1/2 * m * r * ε2 [2]
m * g – S1 – S2 = m * a2 [3]
ε2 * r = ε1 * r [4] i [5] ==> ε2 = ε1

Odejmujemy stronami równania [1] oraz [2]:
S2 =1,5*m*r *ε1 [1 minus 2]

To co wyszło wraz z równaniem [1] wstawiamy do równania[3]
m * g – m * 2*r *ε1 – 1,5*m*r *ε1 = m * ε1 * r [3]
g = 4,5* ε1 * r [3]

Przyspieszenie kątowe dużego krążka (o masie 2*m) wyniesie:
ε1 = 0,22*g /r

a przyspieszenie liniowe małego krążka:
a2 = ε2 * r = ε1 * r = [0,22*g /r] * r = 0,22*g

Przyspieszenie kątowe małego krążka:
ε2 = ε1 = 0,22*g / (ε1*r)

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *