Kinematyka – oblicz składowe przyspieszenia punktu

Witam wszystkich i dzisiaj w związku z kinematyką obliczymy prędkość i składowe przyspieszenia punktu A. Na poniższym rysunku widzimy mechanizm składający się z trzech elementów czyli trzech ogniw:

kinematyka7 - Kinematyka - oblicz składowe przyspieszenia punktu
ogniwa napędowego 1 (o długości L) poruszającego się po prostej (naukowcy powiedzą – ruch postępowy)
ramienia 3 (o długości 2*L) obracającego się wokół punktu B
suwaka 2 łączącego ogniwo napędowe z ramieniem
Dana jest prędkość Vc (jest to prędkość punktu C i jednocześnie całego ogniwa napędowego). Jeżeli wiemy, jak to działa, to powiedzmy, o co pyta autor:

OBLICZ PRĘDKOŚĆ I SKŁADOWE PRZYSPIESZENIA PUNKTU A

Krok po kroku wytłumaczymy sobie, jak do tego podejść:

Krok pierwszy – wychodzimy od tego, co wiemy:

Znamy prędkość ogniwa napędowego 1 i jego wymiary. Dodatkowo w chwili początkowej punkty B, D oraz C tworzą trójkąt równoramienny o podstawie L, dwóch kątach równych 45 stopni i jednym kącie prostym.
I teraz skupmy się na trójkącie BDC.
Ogniwo napędowe (czyli to z numerem 1) przesuwa się ze stałą prędkością Vc. Wynika z tego, że długość DC będzie się zwiększać o Vc*t. Wtedy długość podstawy BC (długość równa L) pozostanie bez zmian i dodatkowo  kąt BCD również pozostanie 45 stopni. I co najlepsze to powstał nowy trójkąt, którego jedną z przyprostokątnych jest droga przebyta przez ogniwo napędowe równa Vc*t.

kinematyka8 - Kinematyka - oblicz składowe przyspieszenia punktu
To teraz skorzystajmy z trygonometrii a dokładnie z tangensa kąta α:
tgα = Vc*t : BD
Widać że odległość BD jest przekątną kwadratu o boku 0,5*L:
BD = √2 * 0,5*L
czyli wracamy do tangensa kąta α:
tgα = Vc*t : (√2 * 0,5*L)
czyli kąt α wynosi:
α = arctg [ Vc*t : (√2 * 0,5*L]

Krok drugi

Zmiana kąta w czasie

nazywa się

prędkością kątową,

a mówiąc bardziej naukowo pochodną kąta po czasie jest prędkość kątowa. W tym przypadku mówimy o prędkości kątowej ogniwa nr 3:
ω3 = da / dt = d/dt ( arctg [ Vc*t : (√2 * 0,5*L) ] ) =
= d/dt ( arctg [ 1,4*Vc*t : L ] ) =

1,4*Vc / L
= —————————-
1 + (1,4*Vc*t : L)²

Krok trzeci – punkt A (koniec ogniwa nr 3) porusza się po okręgu o promieniu 2*L

a więc jego prędkość jest iloczynem prędkości kątowej i promienia okręgu:
VA = ω3 * 2 * L =

1,4*Vc / L * 2 * L
= —————————- =
1 + (1,4*Vc*t : L)2

2,8*Vc
= —————————-
1 + (1,4*Vc*t : L)2

Krok czwarty – prędkość policzona to teraz przechodzimy do przyspieszeń.

Przyspieszenie punktu A może (z akcentem na MOŻE) składać się z dwóch składowych:
– stycznego
– normalnego

https://blog-student.com/kinematyka-przyspieszenie-styczne-i-normalne-przypomnienie-podstaw/
No to liczymy:
Przyspieszenie styczne jest pochodną prędkości po czasie:
pAt = dVA / dt =

2,8*Vc
=d/dt —————————-
1 + (1,4*Vc*t : L)²

= 2,8*Vc * d/dt [ 1/[ 1 + (1,4*Vc*t : L)² ] ]  =

= 2,8*Vc * (-1) * [1/[ 1 + (1,4*Vc*t : L)² ] ²] * 2*(1,4*Vc*t : L) * 1,4*Vc/L = (-11) * Vc³ * t / L² * [ 1/[ 1 + (1,4*Vc*t : L)² ] ²]

Na koniec policzymy przyspieszenie normalne:
pAn = ω3² * 2 * L =

(1,4*Vc / L) ²
= ——————————— * 2 * L
(1 + (1,4*Vc*t : L)² ) ²

Obliczyliśmy 2 składowe przyspieszenia i sumaryczne przyspieszenie punktu A będzie sumą obu wektorów.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *