Rozciąganie pręta – zadanie statycznie niewyznaczalne

Poprzednio rozpoczęliśmy podstawy wytrzymałości

Wytrzymałość materiałów-ponownie podstawy a teraz może zadanie z rozciągania pręta i do tego statycznie niewyznaczalne:

rozciaganie1 - Rozciąganie pręta - zadanie statycznie niewyznaczalne

  Mamy dane przekroje pręta A, moduł Younga E, siłę P i długość l. Pytają się o reakcje utwierdzenia w suficie i podłodze

O co tutaj chodzi?

Ktoś wziął pręt o zmiennym przekroju, jednym końcem przyspawał do podłogi, a górnym końcem przyspawał do sufitu. Jak widać na rysunku całą wysokość pręta podzielono na 3 przedziały i na granicy pierwszego i drugiego oraz drugiego i trzeciego przedziału przyłożono siły 4*P oraz P.

Po pierwsze uwalniamy słup od więzów, czyli zastępujemy sufit i podłogę siłami utwierdzenia obojętnie w którą stronę, ale później się tego trzymamy.

Gdy są już reakcje utwierdzenia to można napisać:

Sumę rzutów sił na oś y, która leży w pionie (w osi słupa):

Piy = P + S1 – 4*P – S2 = 0

Przyjmujemy że siła do góry jest z PLUSEM a siła w dół jest z MINUSEM. Potem można powyższe równanie uprościć i dostaniemy to co poniżej:

Piy = S1 – 3*P – S2 = 0 (1)

W tym równaniu są 2 niewiadome: S1 i S2 czyli to zadanie jest statycznie niewyznaczalne.

Aby je obliczyć musi być kolejne równanie – tym razem GEOMETRYCZNE mówiące, że

suma wydłużeń poszczególnych odcinków (a są trzy i każdy o długości l) musi być równa ZERO.

To jest tak, że jak pierwszy odcinek wydłuży się o 1mm i drugi odcinek wydłuży się o 2mm, to w wyniku tego trzeci odcinek skróci się o 3mm. A to dlatego że odległość między podłogą i sufitem zawsze będzie 3*l:

l1 + l2 + l3 = 0

gdzie l to poszczególne wydłużenia poszczególnych odcinków

Teraz trzeba użyć prawa Hooke’a, które ściśle wiąże się z rozciąganiem pręta. Mówi ono że:

siła * długość pręta

wydłużenie      =    ————————————————————————–

moduł Younga * pole przekroju

Ponieważ mamy 3 przedziały, to w każdym z nich musimy określić siłę rozciągającą pręt czyli siłę normalną. Żeby sobie ułatwić to można użyć kawałka kartki, którym będziemy zakrywać część słupa.

Dla pierwszego przedziału (patrząc od góry) zakrywamy tak, żeby widzieć kawałek tego pierwszego przedziału.

Teraz przepisujemy siły, które widzimy – no i widzimy S1:

N1 = S1

Następnie odsłaniamy trochę więcej słupa w taki sposób, żeby widzieć pierwszy przedział (licząc od góry) i kawałek drugiego przedziału. I oto co widzimy:

N2 = S1 – 4*P

W kolejnym kroku odsłaniamy jeszcze więcej słupa, tak żeby całkowicie widzieć pierwszy i drugi przedział (licząc od góry) oraz kawałek trzeciego. Siły normalne w trzecim przedziale:

N3 = S1 – 4*P + P = S1 – 3*P

Teraz już mając siły w poszczególnych przedziałach (N), długości tych przedziałów (l), moduł Younga (E) oraz przekroje (A) w każdym z przedziałów można to wszystko wstawić do prawa Hooke i równania geometrycznego:

 

N1*l             N2*l              N3*l

———- + ————– + ————- = 0

E*2*A         E*2*A            E*A

 

Po wstawieniu wartości sił normalnych wyjdzie coś takiego:

 

S1*l            (S1-4*P)*l            (S1-3*P)*l

———- + ——————– + ——————– = 0

E*2*A              E*2*A                   E*A

 

Teraz dobrze będzie to wszystko uprościć, czyli mnożymy obie strony przez (E*A) i dzielimy przez l:

 

S1             (S1-4*P)        S1-3*P

—– + —————— + —————- = 0 (2)

2                   2                    1

 

Z tego wszystkiego można wyciągnąć reakcję utwierdzenia S1:

2*S1 = 5*P

S1 = 2,5*P

Reakcję S1 wstawiamy do sumy rzutów na oś y i obliczamy z tego S2:

S1 – 3*P – S2 = 0

S1 – 3*P = S2

S2 = 2,5*P – 3*P = (-0,5*P)

Reakcje utwierdzenia wynoszą: S1 = 2,5*P oraz S2 = (-0,5*P).

To nie jest jedyny typ zadania statycznie niewyznaczalnego (z rozciągania prętów) ale o tym innym razem

 

Rozciąganie i prawo Hooke’a – wytrzymałość materiałów – podstawy

Nie tak dawno omawialiśmy podstawy mechaniki, a teraz dobrze będzie płynnie przejść do wytrzymałości materiałów, a dokładnie do prawa Hooke’a.

Wytrzymałość wcale nie jest tak skomplikowana jak niektórzy ją malują i zajmuje się:

–  siłami działającymi na ciała

– i wywołanymi tym naprężeniami i odkształceniami.

Można tę wiedzę podzielić na kilka prostych rozdziałów:

– rozciąganie

– zginanie

– skręcanie

– ścinanie

Z ROZCIĄGANIEM jest bardzo prosto, bo to jest tak jakbyśmy złapali za 2 końce sznurka (albo jeszcze lepiej gumy) i próbowali go rozerwać. I zanim się uda go rozerwać to na początku delikatnie się rozciągnie, chociaż może na oko tego nie widać (albo widać jeżeli weźmiemy gumę).

I tu dochodzimy do bardzo ważnego prawa HOOKE’a , które opisuje:

O ILE ROZCIĄGNIE SIĘ COŚ POD WPŁYWEM SIŁY ROZCIĄGAJĄCEJ S.

To o ile się rozciągnie nazywają wydłużeniem. W najprostszym ujęciu wydłużenie jest równe:

 

                  S * L

l  =  —————-

          E * A

 

gdzie:

L – długość sznurka albo gumy lub pręta

E – moduł Younga

A – przekrój poprzeczny

Długość sznurka nie wymaga komentarza ale należy powiedzieć słowo o module Younga, który opisuje sprężystość materiału. Jeden materiał można łatwo rozciągać (jak na przykład guma), a inny materiał nie bardzo się nadaje do rozciągania – na przykład beton. No i na końcu mamy przekrój poprzeczny czyli pole przekroju.

To tyle wstępu na temat ROZCIĄGANIA a następnym razem zrobimy jakieś proste zadanie z prawa Hooke’a, żeby to jeszcze lepiej zrozumieć.