Prawo Hooke’a dla skręcania – podstawy

Witam i dzisiaj będzie o prawie Hooke’a dla skręcania. O prawie Hooke dla rozciągania to już było na samym początku zabawy z wytrzymałością materiałów:

Wytrzymałość materiałów-ponownie podstawy

Tutaj przypomnimy sobie jak to po kolei wygląda:

 

                        siła * długość pręta

wydłużenie = ———————————————
moduł Younga * pole przekroju

 

Można zauważyć pewną analogię, jeżeli spojrzymy na odmianę tego samego prawa dla skręcania. Podobnie odnosimy się do pręta, jednak w tym przypadku jest on skręcany:

 

                                moment skręcający * długość pręta
kąt skręcenia      = —————————————————–
G * Jo

 

gdzie:
G – moduł sprężystości postaciowej
Jo – biegunowy moment bezwładności

 

To teraz proponuję spojrzeć powyżej na jeden i drugi wzór:
– kąt skręcenia odpowiada wydłużeniu,
–  moment odpowiada sile,
– moduł sprężystości postaciowej odpowiada modułowi Younga,
– biegunowy moment bezwładności odpowiada przekrojowi.

Moduł sprężystości postaciowej to jest taka właściwość MATERIAŁU, która odpowiada za jego sprężystość podczas skręcania na przykład wałka. Biegunowy moment bezwładności dotyczy przekroju poprzecznego wałka, jego kształtu oraz wymiarów.

Następnym razem zastosujemy to prawo w zadaniu.

Równanie różniczkowe linii ugięcia belki – zadanie 12

Ponownie wracamy do belek – wcześniej obliczaliśmy reakcje w podporach i rysowaliśmy wykresy sił wewnętrznych, a teraz wyznaczymy linię ugięcia belki przy pomocy równania różniczkowego.

zginanie1 - Równanie różniczkowe linii ugięcia belki - zadanie 12

I co to tak naprawdę jest, bo teoria sobie ale dobrze jest wyobrazić sobie wszystko w praktyce?

Jak spojrzymy na belkę na powyższym obrazku (tą belkę już znamy z wcześniejszych zadań) to widać że jest ona obciążana różnymi siłami. Spróbujmy sobie wyobrazić, że belka jest z materiału, który łatwo wygiąć . Te obciążenia spowodują, że belka pod wpływem obciążeń nie będzie prosta tylko lekko się pokrzywi.

Podobnie będzie, gdy ktoś złapie za 2 końce linijki i na środku położy ciężarek – linijka się wygnie.

I to równanie różniczkowe LINII UGIĘCIA to jest taka funkcja matematyczna, której wykres ma dokładnie taki kształt jak wygięta belka. To teraz jak to po kolei zrobić:
1. Dzielimy belkę na przedziały i w każdym z nich piszemy moment gnący

to już było przy okazji rysowania wykresów,

Wytrzymałość-zginanie-zadanie 11

ale działamy:
Pierwszy przedział
Mg(x) = q * a² – q * x * x/2 = q * a2 – 0,5 * q * x²

Drugi przedział
Mg(x) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a) =
=  q * a² – q * a * x + 0,5 * q * a² + 4 * q * a * x – 4 * q * a² =
=  3 * q * a * x – 2,5 * q * a²

2. Dla każdego przedziału piszemy równanie różniczkowe linii ugięcia belki:
Pierwszy przedział:
E * J * d²y/dx2 = -Mg(x)
E * J * d²y/dx2 = 0,5 * q * x² – q * a²
Dwukrotnie całkujemy równanie stronami:
E * J * dy/dx = 0,5 * q * 1/3 * x³ – q * a² * x + c1
E * J * dy/dx = q * 1/6 * x³ – q * a² * x + c1
E * J * y = q * 1/6 * 1/4 * x³ * x – q * a² * 0,5 * x² + c1 * x + d1
E * J * y = q * 1/24 * x³ * x – 0,5 * q * a² * x² + c1 * x + d1 – równanie linii ugięcia belki dla pierwszego przedziału

I to samo drugi przedział:
E * J * d2y/dx2 = -Mg(x)
E * J * d2y/dx2 = 2,5 * q * a²- 3 * q * a * x
E * J * dy/dx = 2,5 * q * a² * x – 3 * q * a * 0,5 * x² + c2
E * J * dy/dx = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
E * J * y = 2,5 * q * a² * 0,5 * x² – 1,5 * q * a * 1/3 * x3 + c2 * x + d2
E * J * y = 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2 – równanie linii ugięcia belki dla drugiego przedziału

Jak już mamy równania linii ugięcia dla obu przedziałów, to jedyne co nie wiadomo, to stałe całkowania c1, d1, c2 oraz d2.

W tym celu:
3. Piszemy warunki brzegowe.
I należy zapytać co to są warunki brzegowe, ponieważ sama ta nazwa niewiele mówi:

zginanie10 - Równanie różniczkowe linii ugięcia belki - zadanie 12

Można sobie wyobrazić, w jaki sposób belka może zostać wygięta i przykład widać na rysunku powyżej czerwona linią przerywaną:
Na pewno na prawym końcu w punkcie C belka wychodzi ze ściany i wychodzi z tej ściany poziomo, a zacznie się wyginać dopiero kawałek od ściany.
Warunkiem brzegowym jest na przykład to, że wygięta belka zawsze wychodzi ze ściany poziomo niezależnie od tego, jak zostanie pogięta przez przyłożone obciążenia. I jak to zapisać:
y=0 dla x=2*a (pierwszy warunek brzegowy) – dosłownie znaczy tyle że na prawym końcu belka się nie ugnie, bo jest wmurowana do ściany
oraz
y’=0 dla x=2*a ( drugi warunek brzegowy) – i to też można opisać dosłownie – belka wychodzi ze ściany poziomo – styczna do belki w punkcie C jest pozioma – to znaczy tyle, że pochodna funkcji opisującej linię ugięcia belki w punkcie C będzie równa zero.
Mamy 2 warunki brzegowe, czyli będą potrzebne jeszcze dwa i one będą dotyczyć punktu B na styku przedziału lewego i prawego.

W punkcie B koniec pierwszego przedziału styka się z początkiem drugiego przedziału, a więc ugięcie na KOŃCU pierwszego przedziału będzie takie samo jak na POCZĄTKU drugiego przedziału i zapiszemy to następująco:
y1=y2 dla x=a (trzeci warunek brzegowy)
Po drugie styczna do belki na końcu pierwszego przedziału będzie taka sama jak styczna do belki na początku drugiego przedziału:
y1’=y2′ dla x=a (czwarty warunek brzegowy).

4. Warunki brzegowe wstawiamy do scałkowanych równań różniczkowych:
Na początek bierzemy drugi warunek brzegowy
y’=0 dla x=2*a
i wstawiamy do równania różniczkowego pierwszego stopnia z drugiego przedziału (dlatego że drugi warunek dotyczy pochodnej y’ oraz dotyczy drugiego przedziału):
E * J * dy/dx = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
E * J * 0 = 2,5 * q * a² * 2*a – 1,5 * q * a * (2*a)² + c2
0 = 5 * q * a³  – 6 * q * a³ + c2
0 =   (- q) * a³ + c2
Pierwsza stała całkowania dla drugiego przedziału
c2 = q * a³

Teraz bierzemy pierwszy warunek brzegowy
y=0 dla x=2*a
i wstawiamy do równania zerowego stopnia dla drugiego przedziału
E * J * y = 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2
Wstawiamy również obliczoną przed chwilą stałą całkowania
E * J * 0 = 1,25 * q * a² * (2*a)² – 0,5 * q * a * (2*a)³ + q * a³ * 2 * a + d2
0 = 5 * q * a³ * a – 4 * q * a³ * a  + q * a³ * a  * 2 + d2
0 = 3 * q * a³ * a  + d2
Druga stała całkowania dla drugiego przedziału
d2 = (-3) * q * a³ * a

Kolejno bierzemy czwarty warunek brzegowy:
y1’=y2′ dla x=a
i przyrównujemy równania pierwszego stopnia dla obu przedziałów
q * 1/6 * x³ – q * a² * x + c1 = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
wstawiając również obliczoną stałą całkowania c2:
q * 1/6 * a³ – q * a² * a + c1 = 2,5 * q * a² * a – 1,5 * q * a * a² + q * a³
(-5/6) * q * a³ + c1 = 2 * q * a³
Pierwsza stała całkowania dla drugiego przedziału
c1 = 2,8 * q * a³

I na koniec bierzemy trzeci warunek brzegowy:
y1=y2 dla x=a
i przyrównujemy równania zerowego stopnia dla obu przedziałów
q * 1/24 * x * x³ – 0,5 * q * a² * x²+ c1 * x + d1 =
= 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2

q * 1/24 * a* a³ – 0,5 * q * a* a³ + 2,8 * q * a* a³ + d1 =
= 1,25 * q * a* a³ – 0,5 * q * a* a³ + q * a* a³ + (-3) * q * a* a³

Pierwsza stała całkowania dla drugiego przedziału
d1 = (-1,25) * q * a* a³ – 2,3 * q * a* a³ = (-3,55) * q * a* a³

Obliczone stałe całkowania wstawiamy do równań linii ugięcia belki:
y1 = (q * 1/24 * x * x³ – 0,5 * q * a² * x² + c1 * x + d1 ) : EJ
y2 = (1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2) : EJ

y1 = (q * 1/24 * x * x³ – 0,5 * q * a² * x² + 2,8 * q * a³ * x – 3,55 * q * a * a³ ) : EJ
y2 = (1,25 * q * a² * x²- 0,5 * q * a * x³ + q * a³ *x – 3 * q * a * a³ ) : EJ

Trójkierunkowy stan naprężenia – ponownie podstawy

Temat trójkierunkowego stanu naprężenia wiąże się pośrednio z tematem rozciągania, ponieważ prawo Hooke’a słusznie kojarzone jest z wydłużeniem pręta:

Wytrzymałość materiałów-ponownie podstawy

 

                               siła * długość pręta

wydłużenie = ———————————————–

    moduł Younga * pole przekroju

 

dotyczy zmiany wymiaru w JEDNYM kierunku – długości.

Przy drobnej modyfikacji powyższego prostego wzoru można nim opisać zmianę wymiarów elementu odkształcalnego w 3 prostopadłych kierunkach.

A tak mówiąc prostymi słowami to na przykład gdy weźmiemy kawałek plasteliny, położymy na stole i naciśniemy na nią, to ona się spłaszczy, ale jednocześnie rozejdzie się na boki. Czyli zmniejszy się jej wysokość, ale zwiększy szerokość i długość. To teraz weźmy ponownie prawo Hooke’a:

 

S * L

L    =   ————————–

E * F

 

Jak podzielimy obie strony przez L:

 

L              S

 = ———–

L                 E * F

I teraz można zapisać L/L jako wydłużenie względne:

L/L =

i wstawić do równania powyżej:

 

S

= ————–

E * F

 

I można przypomnieć że siła podzielona przez przekrój daje naprężenie:

S/F =

I ponownie wprowadzamy to do równania powyżej (prawa Hooke’a):

= / E

I to co dostaliśmy to dalej dotyczy JEDNOKIERUNKOWEGO stanu naprężenia czyli na przykład rozciągania pręta. A teraz jak to będzie wyglądało dla naciskania i rozpłaszczania kawałka plasteliny czyli TRÓJKIERUNKOWEGO stanu naprężenia, czyli oto mamy UOGÓLNIONE PRAWO HOOKE’A:

x = x/E – *y/E – *z/E

I to dotyczy osi x i prostopadłych do niej z oraz y. Pierwszy składnik jest identyczny jak dla JEDNOKIERUNKOWEGO stanu naprężenia. Drugi i trzeci składnik poprzedzony MINUSEM dotyczy odkształceń w kierunkach prostopadłych do osi x (i dlatego tu jest minus, bo jak ściśniemy plastelinę, to ona się spłaszczy-zmniejszy się wymiar i jednocześnie rozejdzie na boki-2 prostopadłe wymiary się zwiększą).  I tu się pojawia tajemnicze oznaczenie:

– stała Poissona

i to jest taka liczba, inna dla każdego materiału, która opisuje ile dany materiał rozpłaszczy się na boki, jak go naciśniemy z góry (stąd ten przykład z rozgniataniem kawałka plasteliny). Analogiczna sytuacja wystąpi dla 2 pozostałych osi:

y = y/E – *x/E – *z/E

z = z/E – *x/E – *y/E

Następnym razem zrobimy proste zadanie z tego tematu.

Momenty gnące belkę i siły tnące w belce – zadanie 11

Witam ponownie i ponownie będziemy działać z belką z poprzedniego wpisu i  ponownie obliczymy momenty gnące i siły tnące.

Wytrzymałość-zginanie-zadanie 10

Tylko że tym razem użyjemy innej, trudniejszej i GORSZEJ metody.zginanie1 - Momenty gnące belkę i siły tnące w belce - zadanie 11

Wymiary belki i obciążenia są te same i to samo jest pytanie:

NARYSOWAĆ WYKRESY MOMENTU ZGINAJĄCEGO BELKĘ I SIŁY TNĄCEJ

Tak samo mamy 2 przedziały i w pierwszym przedziale x zawiera się w przedziale od 0 do a. A jak się zawiera od 0 do a, to może przyjąć każdą wartość z tego przedziału.

  1. Zaczynamy od momentów zginających belkę w punktach A, B i C , ponieważ są to początki i końce przedziałów

A więc zasłaniamy kartką (TEN CZERWONY PROSTOKĄT-KOPERTA) i  odsłaniamy tylko tyle belki z lewej strony, żeby widzieć całą tą wartość dla pierwszego przedziałuzginanie8 - Momenty gnące belkę i siły tnące w belce - zadanie 11

Czyli widzimy od lewej strony tylko belkę o długości x. Liczymy moment, jaki działa na kartkę:
Mg(x) = q * a² – q * x * x/2
Pierwsza pozycja jest bardzo przejrzysta bo jest to moment przyłożony na lewym końcu, a druga pozycja to siła razy ramię – siła to q*x (obciążenie ciągłe razy długość na której ono działa) a ramię to odległość od KARTKI do POŁOWY widocznej części obciążenia ciągłego.

zginanie9 - Momenty gnące belkę i siły tnące w belce - zadanie 11

Analogicznie przechodzimy do drugiego przedziału.

Tutaj zmienna x może wynosić od a do 2*a:
Mg(x) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a)
Druga pozycja to siła q*a (obciążenie ciągłe razy długość na której ono działa – teraz widzimy całe obciążenie ciągłe q) razy ramię czyli odległość od KARTKI do POŁOWY widocznego obciążenia ciągłego.

I w ten sposób policzyliśmy momenty gnące w zależności od x i jak teraz się podstawi odpowiednie wartości takie jak 0, a oraz 2*a to wyjdzie to samo co przy pierwszej metodzie, ale w trochę bardziej zagmatwany sposób, na przykład dla pierwszego przedziału dla x=0 czyli dla punktu A:
Mg(x=0) = q * a² – q * x * x/2 = q * a2 – q * 0 * 0/2 = q * a²
teraz gołym okiem widać że wychodzi to samo co przy pierwszej metodzie:
MgA = q * a²

Dla punktu B:
Mg(x=a) = q * a² – q * a * a/2 = q * a2 – 0,5*q * a2 = 0,5*q * a²

Dla punktu C:
Mg(x=2*a) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a) =
= q * a² – q * a * (2*a-a/2) + 4*q*a * (2*a-a) =
= q * a² – q * a * 1,5*a + 4*q*a * a = 3,5*q * a²zginanie5 - Momenty gnące belkę i siły tnące w belce - zadanie 11

2. Podobnie drugi GORSZY sposób wygląda dla sił tnących.

Dla pierwszego przedziału podobnie zakrywamy kartką i odsłaniamy tyle żeby widzieć lewy koniec belki o długości x. I jakie siły (poprzeczne do belki czyli pionowe) widzimy:

zginanie8 - Momenty gnące belkę i siły tnące w belce - zadanie 11
T(x) = (-q) * x

Tylko obciążenie q o długości x.

Podobnie postępujemy dla drugiego przedziału:

zginanie9 - Momenty gnące belkę i siły tnące w belce - zadanie 11
T(x) = (-q) * a + 4*q*a = 3*q*a

Podstawiając wartości x dla charakterystycznych punktów. Dla punktu A:
T(x=0) = (-q) * x = (-q) * 0 = 0

Dla punktu B z lewej strony:
T(x=a) = (-q) * a

Dla punktu B z prawej strony:
T(x=a) = 3*q*a

Dla punktu C:
T(x=2*a) = 3*q*a

zginanie7 - Momenty gnące belkę i siły tnące w belce - zadanie 11
Jak widać, w pierwszej metodzie wyszło dokładnie to samo, a więc momenty gnące i siły tnące w belce można liczyć i tak i tak.

Moment zginający belkę – zadanie 10

Witam ponownie, dzisiaj przejdziemy do wytrzymałości i momentów zginających belkę. Tutaj będzie trzeba obliczyć momenty gnące, siły tnące i narysować wykresy. Ale po kolei:

Mamy belkę wmurowaną ścianę i obciążoną momentem, siłą i obciążeniem ciągłym. I widać tutaj 2 przedziały : od punktu A do B i od B do C.

zginanie1 - Moment zginający belkę - zadanie 10

Ponieważ reakcje w ścianie są na końcu belki, to nie ma sensu ich obliczać . W tym konkretnym przypadku wyjątkowo możemy nie uwalniać belki od więzów. 

I jedziemy od lewej strony:

  1. Obliczamy momenty zginające belkę w 3 charakterystycznych punktach na początku i końcu przedziałów: A, B i C.

Aby obliczyć moment zginający belkę w punkcie A zasłaniamy prawie całą belkę tak żeby było widać tylko punkt A i sam początek belki.

zginanie2 - Moment zginający belkę - zadanie 10

I co widać – moment skupiony w punkcie A:

MgA = q * a2

Tak samo postępujemy z punktem B – odsłaniamy tylko punkt B i wszystko co jest na lewo od niego.

zginanie3 - Moment zginający belkę - zadanie 10

Oprócz momentu skupionego w punkcie A pojawia się obciążenie ciągłe:

MgB = q * a² – q * a * a/2 = 0,5*q*a²

i teraz po kolei druga część czyli siła od obciążenia ciągłego q*a razy ramię a/2 czyli odległość połowy (obciążenia ciągłego q) do punktu B. A z tymi znakami to jest tak, że q*a² jest na plusie, bo próbuje PODNIEŚĆ koniec belki, a obciążenie ciągłe jest na minusie, bo chce OPUŚCIĆ koniec belki. Mówiąc inaczej q*a² kręci ZGODNIE ze wskazówkami zegara, a obciążenie ciągłe kręci PRZECIWNIE do zegara.

I dochodzimy do ściany czyli prawie do punktu C odsłaniając całą belkę oprócz punktu C. To tak jakbyśmy chcieli złapać za sam prawy koniec BELKI przy samej ścianie.

zginanie4 - Moment zginający belkę - zadanie 10

MgC = q * a² – q * a * 1,5*a + 4*q*a * a = 3,5*q*a²

Po kolei idąc to pierwsza cząstka pozostaje bez zmian i dalej siła od obciążenia ciągłego działa teraz na ramieniu 1,5*a, bo odległość ściany od środka obciążenia ciągłego jest 1,5*a. Siła 4*q*a działa na ramieniu a.

Rysujemy to co obliczyliśmy i poniżej powstał wykres momentu zginającego belkę:

zginanie5 - Moment zginający belkę - zadanie 10

2. Teraz kolej na siły tnące i analogicznie idziemy od lewej strony:

zginanie2 - Moment zginający belkę - zadanie 10

TA = 0

Zasłaniamy prawie całą belkę i tylko odsłaniamy kawałek lewego przedziału tuż przy punkcie A – widać że żadna siła nie działa w poprzek belki (czyli w pionie-siła tnąca).

Przechodzimy do punktu B z lewej strony czyli odsłaniamy cały lewy przedział w taki sposób, aby nie było widać punktu B:

zginanie6 - Moment zginający belkę - zadanie 10

TBL = -q * a

Jedyna poprzeczna do belki siła (siła tnąca czyli w poprzek belki) którą widzimy to siła od obciążenia ciągłego q. Siła działa w dół i dlatego sobie przyjęliśmy minus

Przemieszczamy się kawałek w prawo, aby było widać cały lewy przedział oraz punkt B i wtedy widać siłę tnącą z prawej strony punktu B:

zginanie3 - Moment zginający belkę - zadanie 10

TBP = -q * a + 4*q*a = 3*q*a

Oprócz obciążenia ciągłego w poprzek belki działa jeszcze 4*q*a.

Przesuwamy się jeszcze dalej w prawo aż dojdziemy prawie do ściany czyli tuż na lewo od ściany:

zginanie4 - Moment zginający belkę - zadanie 10

TC = -q * a + 4*q*a = 3*q*a

Rysujemy to co obliczyliśmy i powstał wykres siły tnącej:

zginanie7 - Moment zginający belkę - zadanie 10

I to jest pierwsza metoda, a w kolejnym odcinku trochę inna i trudniejsza metoda