Układ prętowy statycznie niewyznaczalny – zadanie

Cześć wszystkim i tutaj mamy zadanie z układem prętowym statycznie niewyznaczalnym, gdzie sztywną ramę przymocowano do 3 odkształcalnych prętów, z których każdy leci pionowo.

rozciaganie21 300x225 - Układ prętowy statycznie niewyznaczalny - zadanie
Do ramy przyłożono moment M. Autor zadaje pytanie:

OBLICZ SIŁY W PRĘTACH

Podobne zadanie już się zdarzały w niedalekiej przeszłości

https://blog-student.com/wytrzymalosc-zadanie-26-rozciaganie-uklad-statycznie-niewyznaczalny/

i dzisiaj będziemy postępować analogicznie a więc działamy:

Krok pierwszy
Uwalniamy układ od więzów czyli zastępujemy pręty siłami.

rozciaganie22 300x225 - Układ prętowy statycznie niewyznaczalny - zadanie

Krok drugi
Piszemy równania równowagi.
ΣPiy = S1 + S2 + S3 – m*g = 0
ΣMiA = S2 * L + S3 * 2 * L – m * g * L + M = 0
Jak widać mamy 2 równania i 3 niewiadome ( S1 , S2 oraz S3 ), ponieważ jest to układ prętowy statycznie niewyznaczalny i dlatego potrzebne jest dodatkowe równanie geometryczne.

Krok trzeci
Zakładamy, że wszystkie pręty na których wisi rama wydłużą się, ponieważ jeżeli obciążymy układ momentem M to w jakiś sposób pręty muszą się odkształcić, ponieważ są odkształcalne.
Najbardziej prawdopodobne jest , że każdy z prętów wydłuży się o inną długość, ale na tyle na ile pozwolą na to kształt i wymiary ramy. Różne wydłużenia prętów spowodują, że rama obróci się o niewielki kąt. W wyniku tego punkty mocowania prętów do ramy A, B oraz C przemieszczą się tak jak na rysunku poniżej:

rozciaganie23 300x225 - Układ prętowy statycznie niewyznaczalny - zadanie
Na czerwono jest rama przed odkształceniem i na niebiesko jest rama po odkształceniu.
W ten sposób powstanie punkt , który jest punktem obrotu całej ramy. Oczywiście jest to założenie i w trakcie obliczeń wyjdzie, jak naprawdę odkształcają się pręty.
Teraz już widzimy że punkt A po wydłużeniu prętów stanie się punktem A’ i analogicznie pozostałe 2 punkty – B – B’ oraz C – C’.
I to wszystko wygląda pięknie, tylko że w takiej postaci obliczenie siły w prętach wymagałoby cudu. Dlatego też zastosujemy tutaj proste założenie:

PUNKTY MOCOWANIA PRĘTÓW (A, B ORAZ C) PRZEMIESZCZĄ SIĘ PO PROSTEJ POŁOŻONEJ PIONOWO.

To jest oczywiste i teraz przejdziemy do

Kroku czwartego
Przemieszczenie punku A równa się wydłużeniu pręta 1:
AA’ = ΔL1
i analogicznie dla pozostałych dwóch prętów:
BB’ = ΔL2
CC’ = ΔL3

rozciaganie24 300x225 - Układ prętowy statycznie niewyznaczalny - zadanie
Teraz będzie jeszcze ciekawiej:
– na przedłużeniu odcinka AB powstał punkt D (na przecięciu z prętem 3)
– podobnie na przedłużeniu odcinka A’B’ powstał punkt D’.

rozciaganie25 300x225 - Układ prętowy statycznie niewyznaczalny - zadanie
Ponieważ wszystkie kąty między odcinkami są zachowane, to odcinek CC’ równa się odcinkowi DD’ a co za tym idzie:
DD’ = ΔL3
W taki oto sposób powstał trójkąt o podstawie równej odległości między prętami nr1 i nr3 i wysokości równej ΔL3 – ΔL1.

Tutaj od razu widać, że można zastosować twierdzenie Talesa:
L / (ΔL2-ΔL1) = 2*L / (ΔL3-ΔL1)
Dzielimy obie strony równania przez L:
1 / (ΔL2-ΔL1) = 2 / (ΔL3-ΔL1)
Odwracamy liczniki z mianownikami:
ΔL2 – ΔL1 = 0,5*ΔL3 – 0,5*ΔL1
Do obu stron równania dodajemy 0,5*ΔL1:
ΔL2 – 0,5*ΔL1 = 0,5*ΔL3

Krok piąty
I teraz w to można i trzeba wmanewrować prawo Hooke’a:

 

siła w pręcie x długość pręta
wydłużenie = ——————————————-
moduł Younga x przekrój

Dla kolejnych prętów wydłużenia zgodnie z prawem Hooke’a wyniosą:

 

S1 * L
ΔL1 = ——————–
E * A

 

S2 * L
ΔL2 = ———————
E * A

 

S2 * 2 * L
ΔL3 = ————————-
E * A

 

I to wszystko można teraz wstawić do zależności z twierdzenia Talesa:
ΔL2 – 0,5*ΔL1 = 0,5*ΔL3

S2 * L                 0,5*S1*L               0,5*S3*L
————-   –  ————– = —————
E * A                       E * A                        E * A

Mnożymy obie strony równania przez E*A i dzielimy przez L:
S2 – 0,5 * S1 = 0,5 * S3
Jak połączymy to równanie z dwoma statycznymi, które powstały na początku:
ΣPiy = S1 + S2 + S3 – m*g = 0 [1]
ΣMiA = S2 * L + S3 * 2 * L – m * g * L + M = 0 [2]
S2 – 0,5 * S1 = 0,5 * S3 [3]
to powstanie układ TRZECH równań.

 

Krok szósty

Została czysta matematyka – z układu trzech równań obliczymy szukane siły w prętach

Po przekształceniu równania [3]:
2*S2 – S1 – S3 = 0 [3]
dodajemy stronami do równania [1]:
S1 + S2 + S3 – m*g + 2*S2 – S1 – S3 = 0 [1+3]
S2 – m*g + 2*S2 = 0 [1+3]
3*S2 – m*g = 0 [1+3]
3*S2 = m*g [1+3]
i w ten sposób obliczamy siłę w pręcie nr2:
S2 = 0,33*m*g
Obliczoną wartość wstawiamy do równania [2]:
0,33 * m * g * L + S3 * 2 * L – m * g * L + M = 0
Dzielimy obie strony równania przez 2*L
0,17 * m * g + S3 – 0,5 * m * g + 0,5*M/L = 0
i w ten sposób obliczamy siłę w pręcie nr 3:
S3 = (-0,17) * m * g + 0,5 * m * g – 0,5*M/L=0,33 * m * g – 0,5*M/L
Z równania [1] obliczymy siłę w pręcie nr1 układu prętowego statycznie niewyznaczalnego:
S1 = (-S2) – S3 + m*g = (-0,33*m*g) – 0,33 * m * g + 0,5*M/L + m*g = 0,33 * m * g + 0,5*M/L

Prawda  że łatwe?

Wskaźnik wytrzymałości przekroju na zginanie – wytrzymałość

Cześć wszystkim i dzisiaj powiemy coś o wskaźniku wytrzymałości przekroju na zginanie. Wiąże się on bardzo mocno z omawianym niedawno momentem bezwładności.

http://blog-student.com/moment-bezwladnosci-przekroju-zadanie-36/

Nie może być zbyt teoretycznie i dlatego powiedzmy sobie, co to jest ten wskaźnik wytrzymałości przekroju na zginanie:

A więc to taka cecha przekroju (na przykład przekroju poprzecznego belki) która opisuje kształt i wymiary przekroju. Dlatego jest tu mowa o kształcie i wymiarach przekroju, ponieważ te cechy wpływają na wytrzymałość przykładowej belki na zginanie.

Żeby obliczyć wskaźnik na zginanie po pierwsze musimy znać moment bezwładności przekroju i wynosi on na przykład Jxc. Wtedy wskaźnik wytrzymałości będzie równy:

ilorazowi

momentu bezwładności

przez

odległość od osi centralnej do najdalszego punktu przekroju:
Wx = Jxc : ymax
wskazniknazginanie1 300x225 - Wskaźnik wytrzymałości przekroju na zginanie - wytrzymałość
Miarą wskaźnika wytrzymałości na zginanie jest metr do potęgi trzeciej lub milimetr do potęgi trzeciej [m³ lub mm³].
Dla przykładu możemy policzyć taki wskaźnik dla przekroju kwadratowego o boku a. Moment bezwładności wyniesie:
Jxc = a * a³ / 12
Wobec tego wskaźnik wytrzymałości przekroju na zginanie:
Wx = Jxc / ymax = (a * a³ / 12) / (a/2) = a³ / 6
wskazniknazginanie2 300x225 - Wskaźnik wytrzymałości przekroju na zginanie - wytrzymałość
Ponieważ środek ciężkości kwadratu jest w połowie jego wysokości, to najdalszy punkt przekroju ymax oddalony od osi centralnej równa się połowie wysokości czyli a/2.

I to na razie tyle a wkrótce wykorzystamy wiedzę o wskaźniku na zginanie w zadaniach.

Skręcanie wału przenoszącego moc – wytrzymałość – zadanie

Witam wszystkich i dzisiaj będzie trochę nietypowe i jednocześnie proste zadanie ze skręcania wału przenoszącego określoną moc.

https://blog-student.com/wytrzymalosc-zadanie-13-skrecanie-walu/
Wał o minimalnej średnicy czynnej równej d= 20 mm przenosi moc P=10kW przy prędkości obrotowej n=1000obr/min.
skrecanie12 - Skręcanie wału przenoszącego moc - wytrzymałość - zadanie

Autor zadaje pytanie

OBLICZ MAKSYMALNE NAPRĘŻENIE SKRĘCAJĄCE WAŁ

Na sam początek warto przypomnieć co to znaczy średnica czynna:
Jest to średnica wałka, która mieści się w przekroju pod rowkiem wpustowym na najmniejszej średnicy wału . Na poniższym rysunku oznaczono ją listerą d.
skrecanie13 - Skręcanie wału przenoszącego moc - wytrzymałość - zadanie

Tutaj widzimy jeden wpust, ale zdarzają się wałki z dodatkowym drugim i kolejnym wpustem, przy czym wszystkie one będą miały jednakową głębokość.
1. Mając prędkość obrotową obliczymy prędkość kątową wału:
ω = π * n / 30 = π * 1000obr/min / 30 = 105rad/s

2. Mając moc i prędkość kątową obliczymy moment przenoszony

i jest to

iloraz mocy i prędkości kątowej:
M = P / ω = 10 000W / 105rad/s = 95,2Nm = 95 200Nmm

3. Znając minimalną średnicę czynną obliczymy wskaźnik wytrzymałości przekroju na zginanie:
W = π * d³ / 32 = π * 20³ / 32 = 785mm3

4. Maksymalne naprężenie skręcające jest ilorazem przenoszonego momentu oraz wskaźnika wytrzymałości przekroju na zginanie:
τs = M / W = 95 200Nmm / 785mm3 = 121MPa

Prawda że łatwe?

Wytrzymałość na ścinanie sworznia – zadanie 34

Witam wszystkich i dzisiaj będzie zadanie z wytrzymałości ze ścinania sworzni. Na obrazku widzimy połączenie sworzniowe i dana jest siła rozciągająca F szerokość blachy s, dopuszczalne naprężenia ścinające dla sworznia kt, dopuszczalne naprężenia rozciągające dla blachy kr.
scinanie5 - Wytrzymałość na ścinanie sworznia - zadanie 34
Autor zadaje pytanie:

OBLICZ WYMAGANĄ ŚREDNICĘ d SWORZNIA I GRUBOŚĆ g BLACHY
Jeżeli jest podane dopuszczalne naprężenie ścinające kt dla sworznia i rozciągające kr dla blachy, to wynika że trzeba ułożyć DWA warunki wytrzymałościowe:
na ścinanie dla sworznia z którego obliczymy minimalną wymaganą średnicę
na rozciąganie dla blachy z którego obliczymy wymaganą grubość

No to zaczynamy:

Warunek wytrzymałościowy na ścinanie dla sworznia:
F / (2*π*d² / 4 ) < kt
W mianowniku wystąpiło 2 razy pole koła o średnicy d (czyli π* d² / 4), ponieważ mamy 2 powierzchnie ścinane sworznia (tak jak widać na poniższym rysunku, sworzeń zostanie ścięty na 2 powierzchniach).

scinanie4 - Wytrzymałość na ścinanie sworznia - zadanie 34
4*F / (2*π* d² ) < kt
0,64*F / ( d² ) < kt
0,64*F = d² * kt
Po przekształceniu otrzymujemy minimalną średnicę sworznia:
d = √(0,64*F / kt)

Warunek wytrzymałościowy na rozciąganie dla blachy:
F : ( g * (s-d) ) < kr
W mianowniku występuje iloczyn grubości blachy g oraz długości s-d i jest to SZEROKOŚĆ BLACHY pomniejszona o ŚREDNICĘ SWORZNIA – obrazowo są to dwie zakreskowane powierzchnie na poniższym obrazku.
scinanie6 - Wytrzymałość na ścinanie sworznia - zadanie 34
F < g * (s-d) * kr
Z tego wynika wymagana grubość blachy:
g = F / [ (s-d) * kr ]

Trójkierunkowy stan naprężenia – zadanie 32

Witam ponownie i dzisiaj zrobimy zadanie z trójkierunkowego stanu naprężenia:

https://blog-student.com/wytrzymalosc-trojkierunkowy-stan-naprezenia-zadanie-31/

Mamy walec o średnicy D i wysokości 2*D i na ten walec od góry naciska siła F. Dany jest modul Younga E, stala Poissona dla materialu walca.

rozciaganie20 - Trójkierunkowy stan naprężenia - zadanie 32

Autor zadaje pytanie:

OBLICZ ZMIANĘ POLA POWIERZCHNI WALCA PO PRZYŁOŻENIU SIŁY F

Po pierwsze – warto sobie obrać układ współrzędnych

i niech o osie x i y będą leciały równolegle do podstawy, a oś z będzie jednocześnie osią walca i będzie leciała do góry.

Po drugie – piszemy 3 równania opisujące trójkierunkowy stan naprężenia

x = x/E – *y/E – *z/E [1]

y = y/E – *x/E – *z/E [2]

z = z/E – *x/E – *y/E [3]

i tak jak wcześniej mówiliśmy te 3 równania ZAWSZE wystąpią w tego typu zadaniach. I teraz jak spojrzymy na nie dokładniej to widać że mamy 6 niewiadomych:

– odkształcenia względne wzdłuż 3 osi – x, y , z

– naprężenia wzdłuż 3 osi – x , y , z

I teraz to zaczyna być logiczne, że potrzebujemy 6 równań żeby policzyć 6 niewiadomych. A ponieważ już mamy 3 (te powyżej) , to musimy

Po trzecie

wymyśleć 3 dodatkowe.

Wiadomo że wzdłuż osi równoległych do podstawy naprężenie wynosi ZERO, ponieważ na tworzącą walca (boki walca) nic nie naciska.

x = 0 [4]

σy = 0  [5]

Wiadomo że naprężenie wzdłuż osi z (osi walca – w pionie) wyniesie tyle co siła F podzielona przez pole podstawy walca.

z = F : ( 0,25 * * D) = 1,3*F : D2

Po czwarte – mamy teraz 6 równań i 6 niewiadomych .

Jak wstawimy równania [4] , [5] i [6] do równań [1] , [2] oraz [3] to dalej pójdzie z górki:

x = /E – */E – *1,3*F / ( E * D2 ) [1]

y = /E – */E – *1,3*F / ( E * D2 ) [2]

z = 1,3*F / ( E * D2 ) – */E – */E [3]

Po uproszczeniu to wygląda trochę lepiej:

x = (- *1,3*F / ( E * D2 ) [1]

y = (- *1,3*F / ( E * D2 ) [2]

z = 1,3*F / ( E * D2 ) [3]

Jak widać powyżej, mamy już policzone odkształcenia względne we wszystkich kierunkach, czyli o ile PROCENTOWO zmienią się wszystkie prostopadłe do siebie wymiary walca – średnica i wysokość.

Dodatkowo wiemy, że średnica wynosiła D, a jak nacisnęliśmy walec od góry siła F to średnica (która się zwiększyła) wyniosła:

D + D * x = D + D* *1,3*F / ( E * D2 ) = D + * 1,3 * F / ( E * D )

czyli suma początkowej średnicy D i tego odcinka o ile ona się zwiększyła.

Wysokość zmniejszy się i wyniesie:

2*D – 2*D*z = 2*D – 2*D*1,3*F / ( E * D2 ) =

= 2*D – 2,6*F / ( E * D )

czyli początkowa wysokość 2*D minus to o ile walec zmniejszył wysokość.

Pole powierzchni jest sumą

powierzchni tworzącej

oraz

dwukrotnej powierzchni podstawy:

S = 2 * * D2 : 4 + D * * 2 * D = 0,25 * * D2 + * 2 * D2 =

= 2,25 * * D2

Po odkształceniu to samo pole wyniesie:

S + S = 2,25 * * ( D + * 1,3 * F / ( E * D ))2

Czyli zmiana pola wyniesie:

S = 2,25 * * ( D + * 1,3 * F / ( E * D ))2 – 2,25 * * D2

Prawda że łatwe?