Druga zasada dynamiki dla ruchu obrotowego – podstawy

I tak ponownie wracamy do podstaw, ponieważ o tym zdarza nam się zapominać. O dynamice było już na samym początku i o II zasadzie dynamiki również, a dzisiaj opowiemy o jaj zastosowaniu w ruchu obrotowym.

Mechanika-dynamika-jeszcze raz podstawy

Tylko że wtedy było to odniesione do ruchu postępowego:

F = m * a [1]

czyli jeżeli na ciało o masie m działa siła F, to to ciało jedzie z przyspieszeniem a.

 

A jak to będzie w przypadku ruchu obrotowego?

Druga zasada dynamiki dla ruchu obrotowego wygląda tak:

M = J * 

czyli jeżeli na ciało o masowym momencie bezwładności J działa moment M, to ciało obraca się z przyspieszeniem kątowym .

Jak patrzymy na wzór [1] i [2] to siłę F zamieniono na moment M (przy ruchu obrotowym sile odpowiada moment), zamiast masy jest masowy moment bezwładności, a zamiast przyspieszenia liniowego mamy przyspieszenie kątowe.

I to właściwie tyle jeżeli chodzi o uzupełnienie II zasady dynamiki Newtona.

Dodawanie wektorów algebraicznie i skalarnie – podstawy

Drobna wzmianka na temat algebraicznego i skalarnego dodawania wektorów pojawiła się przy okazji rozkładu siły na składowe

Statyka-rzutowanie siły na oś-siła i jej składowe

 

statyka11 - Dodawanie wektorów algebraicznie i skalarnie - podstawy

tylko, że to było proste, ponieważ mieliśmy 2 wektory do siebie prostopadłe.

Innym razem może się zdarzyć że trzeba dodać 2 wektory ustawione względem siebie o kąt . I co wtedy:

statyka6 - Dodawanie wektorów algebraicznie i skalarnie - podstawy

Po pierwsze

Mamy 2 wektory i ustawiamy je w taki sposób, żeby ich początki były w jednym punkcie.

statyka7 - Dodawanie wektorów algebraicznie i skalarnie - podstawy

Po drugie

Jeżeli każdy z nich wychodzi z jednego punktu, to tworzą 2 boki równoległoboku. Przekątna tego równoległoboku wychodząca z tego samego wierzchołka, co 2 dodawane wektory jest ich sumą.

statyka8 - Dodawanie wektorów algebraicznie i skalarnie - podstawy

To wiemy już jak to narysować, a teraz jak obliczyć wartość sumy wektorów czyli długość tej przekątnej?

Jak dodajemy dwie siły i któraś z nich leci pod kątem, to tą siłę która jest pod kątem rozkładamy na 2 składowe (pionową i poziomą) – o tym już niedawno pisaliśmy.

statyka9 - Dodawanie wektorów algebraicznie i skalarnie - podstawy

To teraz widzimy 2 składowe siły F1 oraz siłę F2. Następnie wszystkie składowe poziome dodajemy do siebie i wszystkie składowe pionowe też dodajemy do siebie (wyjątkowo w tym przypadku:

– w poziomie są 2 siły

– i w pionie jest jedna siła).

statyka10 - Dodawanie wektorów algebraicznie i skalarnie - podstawy

I teraz to się zrobiło jeszcze łatwiejsze:

Składowe poziome leżą na jednym boku, a składowe pionowe leżą na drugim przyległym boku prostokąta. Teraz widać, że suma wektorów jest przekątną prostokąta i można ją obliczyć w taki sam sposób jak przy sumie 2 wektorów prostopadłych do siebie:

statyka12 - Dodawanie wektorów algebraicznie i skalarnie - podstawy

Przyspieszenie styczne i normalne w ruchu po okręgu – kinematyka

O tym już było przy okazji zadań z ruchu płaskiego,

https://blog-student.com/kinematyka-zadanie-3-obliczenie-przyspieszenia-w-ruchu-plaskim/

ale zanim przejdziemy do trudniejszych, to warto przypomnieć jedną z podstaw kinematyki – jak obliczyć przyspieszenia styczne i normalne w ruchu po okręgu.

Wyobraźmy sobie, że pojazd jedzie po drodze i wjeżdża w zakręt o promieniu R. Wtedy MOGĄ wystąpić 2 różne wektory przyspieszeń:

kinematyka3 - Przyspieszenie styczne i normalne w ruchu po okręgu - kinematyka

– styczne pt

– i normalne pn

Przyspieszenie styczne (jak wskazuje jego nazwa i jak widać na powyższym szkicu) jest STYCZNE do łuku drogi, po której jedzie. Jest ono równe pochodnej prędkości po czasie

pt = dV/dt

a znaczy to tyle, że jeżeli prędkość (wartość prędkości) się NIE ZMIENIA to przyspieszenie styczne jest równe ZERO. Pisząc innymi słowami (prostymi słowami) przyspieszenie styczne opisuje zmiana prędkości. 

Przyspieszenie normalne jest zwrócone do środka łuku, po którym pojazd jedzie i jest ono równe:

pn = V² : R

Całkowite przyspieszenie punktu jadącego po łuku jest sumą obu wektorów przyspieszeń czyli stycznego i normalnego.

Belka – obliczanie reakcji – statyka – zadanie 8

Dobrze będzie teraz powrócić do statyki i teraz zrobimy takie zadanie z belką, w której obliczymy reakcje podpór:

Jest sobie belka oparta w punktach A i B – to tak jakby ktoś wziął szynę tramwajową i położył na dwóch cegłach.

W punkcie A jest podpora PRZEGUBOWA STAŁA czyli pozwalająca tylko na obrót belki wokół punktu A. A więc lewy koniec belki NIE MOŻE pojechać ani w pionie ani w poziomie.

W punkcie B jest podpora PRZEGUBOWA PRZESUWNA (bo widać tutaj dwie poziome kreski) pozwalająca na obrót belki wokół punktu B oraz przesuw poziomy (poziomy bo są dwie poziome kreski). A więc w punkcie B belka NIE MOŻE pojechać w pionie. Autor zadaje pytanie:

OBLICZ REAKCJE PODPÓR

No to po kolei:

1. Uwalniamy belkę od więzówstatyka5 - Belka - obliczanie reakcji - statyka - zadanie 8

czyli zastępujemy dwie podpory (A i B) siłami . Jak napisano trochę wcześniej lewy koniec belki (w punkcie A) NIE MOŻE pojechać ani w pionie ani w poziomie i dlatego rysujemy DWIE reakcje (pionową i poziomą – nieważne czy prawo czy lewo i czy góra czy dół) działające na belkę. Krótko mówiąc reakcje działające na belkę pokazują, w którą stronę belka NIE MOŻE pojechać.

Tak samo w punkcie B rysujemy reakcję pionową bo w pionie belka NIE MOŻE pojechać.

2. Teraz kolej na równania równowagi.

Ponieważ wszystkie siły leżą na płaszczyźnie i nie przecinają się w jednym punkcie to jest to układ sił PŁASKI ROZBIEŻNY. Dla układu płaskiego rozbieżnego piszemy TRZY równania równowagi:

suma rzutów sił na oś poziomą (przeważnie x)

i na oś pionową (przeważnie y)

oraz moment sił względem dowolnego punktu.

Na jednej osi wszystko wytłumaczymy i dalej wszystko będzie bardzo proste. Suma rzutów sił na oś x to suma wszystkich sił poziomych i rzutów sił poziomych.

Mechanika – statyka – zaczynamy od podstaw

Z sumy rzutów sił na oś x:

Pix = (-RAx) – F1*cos = 0 [1]

Z sumy rzutów sił na oś y:

Piy = RAy – F1*sin+ F2 + F3 + RB = 0 [2]

Z sumy momentów względem punktu A:

MiA = F1*sin*1 – F2*2 – RB*4 – F3*5 = 0 [3]

3. Mamy wszystkie równania statyczne i z nich obliczamy szukane reakcje

Przekształcając równanie [3] otrzymujemy:

4*RB = F1*sin*1 – F2*2 – F3*5

W wyniku czego reakcja w podporze przegubowej przesuwnej wynosi:

RB = 0,25*F1*sin – 0,5*F2 – 1,25*F3

Z [2] równania obliczymy reakcję pionową w podporze przegubowej stałej:

RAy = F1*sin– F2 – F3 – RB

Z równania [1] obliczymy reakcję poziomą w lewej podporze:

RAx = (-F1)*cosα

Kolejne trudniejsze zadania w kolejnych odcinkach

 

Reakcje w podporach – belka – statyka – zadanie 8

Dobrze będzie teraz powrócić do statyki i teraz zrobimy takie zadanie z belką, w której obliczymy reakcje w podporach:

Jest sobie belka oparta w punktach A i B – to tak jakby ktoś wziął szynę tramwajową i położył na dwóch cegłach.

W punkcie A jest podpora PRZEGUBOWA STAŁA czyli pozwalająca tylko na obrót belki wokół punktu A. A więc lewy koniec belki NIE MOŻE pojechać ani w pionie ani w poziomie.

W punkcie B jest podpora PRZEGUBOWA PRZESUWNA (bo widać tutaj dwie poziome kreski) pozwalająca na obrót belki wokół punktu B oraz przesuw poziomy (poziomy bo są dwie poziome kreski). A więc w punkcie B belka NIE MOŻE pojechać w pionie. Autor zadaje pytanie:

OBLICZ REAKCJE W PODPORACH

No to po kolei:

1. Uwalniamy belkę od więzówstatyka5 - Reakcje w podporach - belka - statyka - zadanie 8

czyli zastępujemy dwie podpory (A i B) siłami . Jak napisano trochę wcześniej lewy koniec belki (w punkcie A) NIE MOŻE pojechać ani w pionie ani w poziomie i dlatego rysujemy DWIE reakcje (pionową i poziomą – nieważne czy prawo czy lewo i czy góra czy dół) działające na belkę. Krótko mówiąc reakcje działające na belkę pokazują, w którą stronę belka NIE MOŻE pojechać.

Tak samo w punkcie B rysujemy reakcję pionową bo w pionie belka NIE MOŻE pojechać.

2. Teraz kolej na równania równowagi.

Ponieważ wszystkie siły leżą na płaszczyźnie i nie przecinają się w jednym punkcie to jest to układ sił PŁASKI ROZBIEŻNY. Dla układu płaskiego rozbieżnego piszemy TRZY równania równowagi:

suma rzutów sił na oś poziomą (przeważnie x)

i na oś pionową (przeważnie y)

oraz moment sił względem dowolnego punktu.

Na jednej osi wszystko wytłumaczymy i dalej wszystko będzie bardzo proste. Suma rzutów sił na oś x to suma wszystkich sił poziomych i rzutów sił poziomych.

Mechanika – statyka – zaczynamy od podstaw

Z sumy rzutów sił na oś x:

Pix = (-RAx) – F1*cos = 0 [1]

Z sumy rzutów sił na oś y:

Piy = RAy – F1*sin+ F2 + F3 + RB = 0 [2]

Z sumy momentów względem punktu A:

MiA = F1*sin*1 – F2*2 – RB*4 – F3*5 = 0 [3]

3. Mamy wszystkie równania statyczne i z nich obliczamy szukane reakcje

Przekształcając równanie [3] otrzymujemy:

4*RB = F1*sin*1 – F2*2 – F3*5

Reakcja w podporze przegubowej przesuwnej wynosi:

RB = 0,25*F1*sin – 0,5*F2 – 1,25*F3

Z [2] równania obliczymy reakcję pionową w podporze przegubowej stałej:

RAy = F1*sin– F2 – F3 – RB

Z równania [1] obliczymy reakcję poziomą w lewej podporze:

RAx = (-F1)*cosα

Kolejne trudniejsze zadania w kolejnych odcinkach