Twierdzenie Steinera i moment bezwładności przekroju

Witam wszystkich i dzisiaj przy okazji momentów bezwładności przekrojów będzie o twierdzeniu Steinera . Już mówię, co to oznacza:

Wielokrotnie w mechanice i wytrzymałości spotykamy się z przekrojami na przykład z przekrojami zginanych belek czy skręcanych wałów. Taki przekrój może być prostokątem, kołem trójkątem lub dowolną kombinacją wymienionych figur. Każdy przekrój posiada środek ciężkości (o czym już było niedawno) oraz moment bezwładności.
To może wystarczy tego wstępu, bo o momencie bezwładności przekroju dzisiaj będzie. Przypomnę, że jest to taka wielkość opisująca figurę, która mówi, w jaki sposób jest ona położona względem osi układu współrzędnych. Jeżeli ta oś przechodzi przez środek ciężkości przekroju to nazywa się

OSIĄ CENTRALNĄ.

Momenty bezwładności podstawowych figur względem osi centralnych można znaleźć w literaturze i kilka przykładów zamieszczam poniżej
momentbezwladnisci1 1 - Twierdzenie Steinera i moment bezwładności przekroju
Wszystko pięknie tylko często potrzeba obliczyć moment bezwładności przekroju względem osi x równoległej do CENTRALNEJ xc ale NIE PRZECHODZĄCEJ przez środek ciężkości przekroju. I na to gotowych wzorów nie ma, ale z pomocą przychodzi twierdzenie Steinera.
momentbezwladnosci2 1 - Twierdzenie Steinera i moment bezwładności przekroju
Nawiązując do powyższego rysunku mamy dane:
– moment bezwładności przekroju względem osi centralnej Jxc (na przykład może to być trójkąt, koło lub inna figura)
– pole figury S
– odległość miedzy osią centralna xc a równoległą do niej osią x którą oznaczono a .
I teraz uwaga:
Moment bezwładności względem osi x wyniesie:

J = Jxc + S * a²

Prawda że łatwe?

Private: Dynamika – regulator – zadanie 33

Mamy taki regulator, w którym belkę o masie m przymocowano przegubowo w 2/3 długości od dołu do wału.
dynamika12 - Private: Dynamika – regulator – zadanie 33
Wał obraca się z prędkością kątową ω . Autor zadaje pytanie:

O JAKI KĄT α ODCHYLI SIĘ  BELKA?

Po pierwsze
Całość uwalniamy od więzów czyli:
– zastępujemy przegub dwiema prostopadłymi reakcjami
– przykładamy ciężar do belki
– ponieważ całość obraca się, to do belki przykładamy siły odśrodkowe bezwładności

dynamika13 - Private: Dynamika – regulator – zadanie 33

Po drugie
Piszemy równania równowagi, a ponieważ jest to układ PŁASKI ROZBIEŻNY, to piszemy TRZY równania równowagi:
∑Pix = ∫dB –  ∫dB2 – Rx = 0 [1]
∑Piy = Ry – m*g = 0 [2]
∑Mio = ∫dB*x*cosα – m*g*L/6*sinα + ∫dB2*x2*cosα = 0 [3]

Po trzecie
W powyższych równaniach pojawiła się całka i teraz warto ją do końca policzyć, ale na początek dobrze będzie zająć się elementarną siłą dB czyli siłą odśrodkową bezwładności. To jest taka siła (mała siła), która działa na niewielką cząstkę belki o bardzo niewielkiej masie. Chodzi o to, że jak zsumujemy te wszystkie małe elementarne siły dB, to będziemy mieć sumaryczną siłę odśrodkową działającą na belkę.

dB = dm * ω² * x * sinα
Analogicznie elementarna siła odśrodkowa po krótszej stronie belki wyniesie:
dB2 = dm * ω² * x2 * sinα

Teraz stworzymy zależność która mówi, że

Elementarna masa dm ma się tak do całej masy belki m, jak elementarna długość dx do całkowitej długości L:

dm/m = dx / L

z tego wyciągamy dm:

dm = m * dx / L

i wstawiamy do obliczonych wcześniej elementarnych sił bezwładności:

dB = m/L * ω² * x *sinα* dx

dB2 = m/L * ω² * x2 *sinα* dx

Następnie robimy z tego całki i obliczamy je. Pierwsza całka oznaczona od zera do 2/3*L:
∫m/L*ω²*x*sinα dx = m/L*ω²*sinα*1/2*(2/3*L)²  = m/L*ω² *sinα*1/2*4/9*L²  =
= m*ω² *sinα*2/9*L

I druga całka oznaczona od zera do L/3:
∫m/L*ω² *x2*sinα dx = m/L*ω² *sinα*1/2*(L/2)² = m/L*ω²* sinα*1/2*L² /4 =

= m * ω² * sinα * L/8

Trzecia całka oznaczona od zera do 2/3*L:
∫dB*x*cosα = ∫m/L*ω² *x*sinα*dx*x*cosα = m/L*ω²* sinα*cosα*1/3*(2/3*L)³ =
= m*ω² *sinα*cosα*8/81*L²

Czwarta całka oznaczona od zera do L/3:
∫dB2*x2*cosα = ∫m/L*ω² *x2*sinα*dx*cosα x2 =
= m/L * ω² * sinα * cosα * 1/3 * (L/3)³ = m * ω² * sinα * cosα * L²/81

I teraz można to co wyszło z tych wszystkich całek wstawić do równania momentów:
∑Mio = m * ω² * sinα * cosα * 8/81 * L² – m * g * L/6 * sinα +
+ m * ω² * sinα * cosα * L²/81 = 0 [3]

ω² * cosα* 8/81 * L²  – g*L/6 + ω² * cosα * L²/81 = 0
ω² * cosα* 8/81 * L² + ω² * cosα * L²/81 = g*L/6
ω² * cosα* 9/81 * L² = g*L/6
I jak to sie to uprości to mamy coś takiego
cosα = 1,5 * g : ( ω² * L )
Wobec tego kąt odchylenia belki wyniesie:
a = arccos (1,5 * g : ( ω² * L ) )

Prawda że łatwe?

Statyka – ściąga – podstawy

Witam ponownie i dzisiaj stworzymy ściągę ze statyki. Tak sobie pomyślałem, że po zamieszczeniu kilkudziesięciu postów dobrze będzie zebrać do kupy to wszystko, co jest potrzebne do zrozumienia podstaw mechaniki oraz zrobienia tych prostych i tych trudniejszych zadań. W pierwszych postach pół roku wcześniej podkreślaliśmy, że najważniejsze są PODSTAWY

Mechanika – pierwsza i trzecia zasada dynamiki Newtona

i jak się je zrozumie to naprawdę niewiele więcej potrzeba, aby tę wiedzę posiąść i umieć zastosować w praktyce.

I tak powstała ściąga albo inaczej mapa myśli i zaczniemy od ściągi z mechaniki – na początek statyka:

sciaga7 - Statyka - ściąga - podstawy

 

A więc mamy ściągę ze statyki i tak naprawdę tyle potrzeba żeby temat zrozumieć i zrobić każde zadanie.

Po lewej znalazły się

I i III zasady dynamiki Newtona

i one są zawsze używane w statyce.

sciaga2 - Statyka - ściąga - podstawy

Pośrodku mamy

tabele z układami sił.

Tak naprawdę każde zadanie ze statyki to jest kilka lub więcej sił ułożonych w mniej lub bardziej skomplikowany sposób.

sciaga8 - Statyka - ściąga - podstawy

 

Przykładem może być belka już uwolniona od więzów i widać reakcje podpór i parę sił zewnętrznych.

statyka5 - Statyka - ściąga - podstawy

W tabeli z różnymi rodzajami układów sił widać 4 różne kombinacje ponieważ już wiemy, że możemy mieć układy sił na płaszczyźnie lub w przestrzeni, a także siły mogą się zbiegać w jednym punkcie (zbieżne) oraz w innym przypadku siły nie będą się zbiegać w jednym punkcie (rozbieżne albo dowolne).

Jeszcze niżej na ściądze mamy 3 różne rodzaje podpór i utwierdzeń

, które można spotkać w zadaniach jeżeli uwolnimy dane ciało lub układ od więzów:

sciaga9 - Statyka - ściąga - podstawy

– podpora przegubowa przesuwna

– podpora przegubowa stała

– utwierdzenie albo wmurowanie

Jak wiadomo i jak widać na powyższym obrazku zasadniczą sprawą jest różna liczba reakcji przy każdym z 3 przypadków.

Może trudno uwierzyć że to wszystko jest tak proste, ale weźmy pierwsze z brzegu zadanie z układów płaskich. Na tym prostym przykładzie pokażemy, jak łatwo jest poruszać się po temacie

statyka1 - Statyka - ściąga - podstawy

Powyżej widzimy, że mamy płaski układ sił i jak uwolnimy od więzów pudło, które leży na równi

statyka2 - Statyka - ściąga - podstawy

to widać że siły zbiegają się praktycznie w jednym punkcie i dlatego zgodnie ze ściągą

sciaga5 - Statyka - ściąga - podstawy

możemy napisać 2 równania równowagi (sumy rzutów sił na osie x oraz y), które będą zgodne z I zasadą dynamiki, ponieważ siły działające na pudło się równoważą i w związku z tym pudło pozostaje w spoczynku.

Autor zadania podał współczynnik tarcia między pudłem a równią, a więc zgodnie ze ściągą

sciaga6 - Statyka - ściąga - podstawy

jeżeli pomiędzy ciałami występuje nacisk i pudło chce zjechać z równi (zamierzony ruch), to wystąpi również siła tarcia.

Poza tym jak widać powyżej, tarcie i nacisk działające na pudło są zwrócone w górę i w lewo. Zgodnie z III zasadą dynamiki Newtona o której również wspomniano na ściądze to samo tarcie i ten sam nacisk również działają na równię pochyłą, ale będą zwrócone w przeciwne strony.

Na tym prostym przykładzie widać jak prosta jest mechanika, jak łatwa jest statyka i nie potrzeba przeczytać wszystkich książek, żeby to ogarnąć.

Statyka – układ przestrzenny – zadanie 31

Jakiś czas temu było zadanie ze statyki z układów płaskich a teraz zrobimy prosty układ przestrzenny.

Jest taka sobie klapa o masie m w kształcie trójkąta równoramiennego ułożyskowana na jednym z boków.
statyka22 - Statyka – układ przestrzenny – zadanie 31
Żeby się ta klapa trzymała w pozycji poziomej, to do jednego z wierzchołków przymocowano cięgno. Drugi koniec cięgna zamocowano do pionowej ściany na wysokości h równej długości boku trójkąta. Autor zadaje pytanie:

OBLICZ REAKCJE WIĘZÓW

Jasna sprawa że chodzi o:
– reakcje w łożyskach
– i siłę w cięgnie.

Po pierwsze – uwalniamy od więzów

czyli zastępujemy siłami łożyska i pręt, bo to łączy klapę ze światem zewnętrznym.
statyka23 - Statyka – układ przestrzenny – zadanie 31
W lewym łożysku będziemy mieć 3 reakcje ( 2 poprzeczne i jedna wzdłużna) ponieważ jest to łożysko poprzeczno-wzdłużne. W prawym łożysku będą 2 prostopadłe reakcje w poprzek osi obrotu klapy, ponieważ jest to łożysko poprzeczne. Szósta reakcja jest siłą wzdłuż cięgna. Ciężar klapy przykładamy w środku ciężkości trójkąta czyli w 1/3 wysokości od podstawy.

Po drugie

Tutaj można napisać 6 równań ( trzy sumy rzutów sił na osie i trzy sumy momentów wokół osi) ponieważ jest to układ sił:
– przestrzenny
– rozbieżny – bo siły nie zbiegają się w jednym punkcie

Przy okazji warto określić położenie siły S a dokładnie kąt zawarty między siłą S a bokiem trójkąta.
Wiemy że zarówno podstawa jak i wysokość trójkąta mają długość h. Jak podzielimy trójkąt na pół to będziemy mieć 2 jednakowe trójkąty prostokątne

 

statyka24 - Statyka – układ przestrzenny – zadanie 31
Długości przyprostokątnych widzimy na rysunku powyżej a przeciwprostokątną obliczymy z twierdzenia Pitagorasa:
h² + (h/2)² = AC²
AC = √[h² + (h/2)² ] = √ [h² + h² /4 ] = √ [1,25*h² ]  = 1,12 * h

To już zrobione, to teraz trzeba obliczyć kąt między cięgnem-siłą S a obliczoną przeciwprostokątną AC.
statyka25 - Statyka – układ przestrzenny – zadanie 31
Jak widać na powyższym rysunku, jest to kąt między przeciwprostokątną klapy a jedną z przyprostokątnych kolejnego trójkąta prostokątnego ale tym razem takiego który jest umieszczony w pionie. Widać również, że mamy długości 2 boków, czyli możemy użyć trygonometrii. Jeżeli w trójkącie prostokątnym mamy kąt i 2 przyprostokątne, to z daleka widać, że to będzie tangens:
tgα = h : (1,12*h) = 0,893
czyli szukany kąt wynosi
α = arctg0,893 = 42°

Kolejna pomocnicza czynność to obliczenie kąta wierzchołkowego klapy w punkcie mocowania cięgna. Tutaj warto wrócić do połowy trójkąta równoramiennego-klapy czyli trójkąta prostokątnego ADC.

statyka26 - Statyka – układ przestrzenny – zadanie 31
Na rysunku powyżej oznaczono połowę kąta wierzchołkowego klapy jako β/2. Znamy wszystkie długości boków w trójkącie prostokątnym i jeżeli wiemy że do obliczenia kąta musimy użyć trygonometrii, to możemy użyć dowolnej funkcji. Dla uproszczenia obliczeń użyjemy funkcji tangens:
tgβ/2 = 0,5*h / h = 0,5
β/2 = arctg0,5 = 26,5°
a więc szukany kąt wierzchołkowy trójkąta w punkcie mocowania cięgna wyniesie:
β = 53°
To jak już mamy wszystkie kąty i wzajemne położenie sił działających na klapę, to warto rozłożyć siłę w cięgnie S na dwie składowe, ponieważ nie jest ona równoległa do żadnej osi. Wiadomo tyle, że tworzy ona kąt a z bokiem AC trójkąta, wobec tego rozkładamy ją  na 2 składowe:
– pionową S*sinα
– równoległą do boku trójkąta S*cos α

statyka27 - Statyka – układ przestrzenny – zadanie 31

Po trzecie – to teraz piszemy równania równowagi statycznej dla tego układu

i dobrze będzie zacząć od sumy momentów:
∑Mix = m*g*h/3 – S*sinα*h=0 [1]
Wiadomo, że siła daje moment względem osi jeżeli:
NIE PRZECINA osi
– lub NIE JEST RÓWNOLEGŁA do osi
Wobec tego moment względem osi x (osi obrotu klapy) dają ciężar m*g i siła w cięgnie S.
Wiadomo również, że:
MOMENT = SIŁA * RAMIĘ
oraz wiadomo również, że siła i ramię muszą być do siebie PROSTOPADŁE.
W nawiązaniu do powyższego równania momentów:
– ciężar m*g działa na ramieniu 1/3 wysokości trójkąta h (bo tutaj jest jego środek ciężkości)
– składowa S*sinα działa na ramieniu h
I tutaj należy podkreślić, że składowa S*cosα nie daje momentu, ponieważ PRZECINA oś x. Jak już to wszystko wiadomo, to lecimy z pozostałymi osiami:
∑Miy = m*g*h/2 – S*sinα*h/2 – RBz*h = 0 [2]
Tutaj należy podkreślić że siły RAz i RAx nie dają momentów, bo przecinają oś y, a siły RAy i RBy też NIE dają momentów, ponieważ są do osi y RÓWNOLEGŁE.
No i została oś z:
∑Miz = RBy * h = 0 [3]
Sumy momentów są zrobione to teraz sumy rzutów sił:
∑Pix = RAx + S*cosα*sin β/2 = 0 [4]
∑Piy = RAy + RBy – S*cosα*cosβ/2 = 0 [5]
∑Piz = RAz + RBz – m*g + S*sinα = 0 [6]

I oto mamy wszystkie równania statyczne dla tego układu. Z powyższych 6 równań można wszystkie reakcje obliczyć. Z równania [1] obliczymy siłę w cięgnie:
m*g*h/3 = S*sinα*h
m*g = S*sinα*3
S = m*g : (3*sinα) = m*g : (3*sin42° ) = 0,5*m*g

Z równania [2] obliczymy reakcję RBz:
m*g*h/2 – S*sinα*h/2 = RBz*h
RBz = m*g/2 – S*sinα/2 = 0,5*m*g – 0,5*m*g*sin21° = 0,32*m*g
Z równania [3] wynika:
RBy = 0

Z równania [4] obliczymy reakcję RAx:
RAx = (-S)*cosα*sinβ/2 = (-m*g / (3*sin α) )*cosα*sinβ/2 =
= (-0,17)*m*g*ctgα*sinβ = (-0,17)*m*g*ctg42°*sin53° =
= (-0,15)*m*g

Z równania [5] obliczymy RAy:
RAy = (-RBy) + S*cosα*cosβ/2 = 0,17*m*g*ctgα*cosβ  =
= 0,17*m*g*ctg42°*cos53°  = 0,11*m*g

Z równania [6]obliczymy reakcję RAz:
RAz = (-RBz) + m*g – S*sinα = (-m)*g/2 + S*sinα/2 + m*g – S*sinα =
= S*(sinα /2-sinα) + 0,5*m*g =
= m*g / (3*sinα)*(sinα/2-sinα) + 0,5*m*g =
= 0,33*m*g * sin21° / sin42° + 0,17*m*g = 0,35*m*g

Prawda że łatwe?

Dynamika – praca i energia – zadanie 30

Dzisiaj zrobimy kolejne i trochę inne zadanie z dynamiki z pracy i energii:

Dynamika – energia – zadanie 21

Na rysunku widać że pudło startuje z prędkością początkową i zjeżdża po równi, w drugim etapie jedzie po drodze poziomej i w trzecim etapie wjeżdża po równi. Każdy z 3 odcinków odpowiada drodze s.

dynamika9 - Dynamika - praca i energia - zadanie 30

Pytanie na jakie szukamy odpowiedzi to:

JAKA MUSI BYĆ PRĘDKOŚĆ POCZĄTKOWA PUDŁA, ŻEBY PRZEJECHAŁO WSZYSTKIE 3 ODCINKI O DŁUGOŚCIACH s?

Po pierwsze – ustalamy siły zewnętrzne działające na pudło

w każdym z 3 odcinków.

dynamika10 - Dynamika - praca i energia - zadanie 30

Jak widać na pudło działa:

  • ciężar m*g
  • nacisk N1 , N2 lub N3
  • tarcie μ*N1 , μ*N2 lub μ*N3

 

Po drugie

Piszemy równanie mówiące, że

ZMIANA ENERGII KINETYCZNEJ UKŁADU

RÓWNA SIĘ

PRACY WYKONANEJ PRZEZ SIŁY ZEWNĘTRZNE

ΔEk = ∑L

Ponieważ w tym zadaniu mamy 3 odcinki, po których porusza się pudło, to będziemy mieć 3 etapy kiedy praca będzie przechodzić w energię.
dynamika11 - Dynamika - praca i energia - zadanie 30
Poszczególne odcinki oznaczono na CZERWONO:
1-2 – odcinek pierwszy – zjazd z równi
2-3 – odcinek drugi – ruch po drodze poziomej
3-4 – odcinek trzeci – wjazd na równię

Kolejno dla poszczególnych odcinków równoważność pracy i zmiany energii:

Ek2 – Ek1 = ∑L1-2
Ek3 – Ek2 = ∑L2-3
Ek4 – Ek3 = ∑L3-4

Po trzecie

Energia kinetyczna pudła w punkcie 1 – początek zjazdu z równi:
Ek1 = m * V² / 2

Energia kinetyczna pudła w punkcie 2 – po zjeździe z równi:
Ek2 = m * V2² / 2

Energia kinetyczna pudła w punkcie 3 – na końcu odcinka poziomego:
Ek3 = m * V3² / 2

Energia kinetyczna pudła w punkcie 4 – po wjeździe na równię:
Ek4 = 0

Po czwarte – suma prac sił zewnętrznych na poszczególnych odcinkach:
Odcinek 1-2 – praca siły tarcia i ciężaru:
∑L1-2 = m*g*s*sinα – N1*m*s

Odcinek 2-3 – praca siły tarcia:
∑L2-3 = (-N2)*m*s

Odcinek 3-4 – praca siły tarcia i ciężaru:
∑L3-4 = (-m)*g*s*sinα – N3*m*s

Na podstawie tego co powyżej powstaną 3 równania równoważności pracy i energii – trzy bo są 3 odcinki ruchu pudła:

Pierwszy odcinek:
m*V2² / 2  – m*V² / 2 = m*g*s*sinα – N1*m*s

Drugi odcinek:
m*V3² / 2 – m*V2² / 2 = (-N2)*m*s

Trzeci odcinek:
0 – m*V3² / 2 = (-m)*g*s*sinα – N3*m*s

Po piąte – w ten sposób powstał układ 3 równań

i teraz policzymy niewiadome:
V2 , V , N1 , V3 , N2 , N3
6 niewiadomych i 3 równania czyli potrzeba 3 dodatkowych równań. Najbardziej stosowne będzie obliczenie nacisków N1 , N2 oraz N3 na 3 kolejnych odcinkach.

dynamika10 - Dynamika - praca i energia - zadanie 30
Pierwszy odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N1:
∑Piy = N1 – m*g*cosα = 0
Nacisk podczas zjazdu z równi:
N1 = m*g*cosα

Podobnie drugi odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N2:
∑Piy = N2 – m*g = 0
Nacisk podczas jazdy po drodze poziomej:
N2 = m*g

Trzeci odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N3:
∑Piy = N3 – m*g*cosα = 0
Nacisk podczas wjazdu na równię:
N3 = m*g*cosα

To jak już mamy policzone wszystkie naciski N1 , N2 i N3 to teraz to wstawimy do równań równoważności pracy i energii:
m*V2² / 2 – m*V² / 2 = m*g*s*sinα – m*g*cosα*m*s [1]
m*V3² / 2 – m*V2² / 2 = (-m*g )*m*s [2]
0 – m*V3² / 2 = (-m)*g*s*sinα – m*g*cosα*m*s [3]

Na początek bierzemy równanie [3] i obliczymy z niego prędkość na końcu odcinka poziomego V3:
m*V3² / 2 = m*g*s*sinα + m*g*cosα*m*s
V3² / 2 = g*s*sinα + g*cosα*m * s
V3² = 2*g*s*sina + 2*g*cosα*m*s
V3² = 2*g*s* ( sina + cosα*m )
V3 = √ [2*g*s * ( sina + cosα*m )]

Jak wstawimy V3 do równania [2] to można obliczyć V2:
m*2*g*s* ( sinα + cosα*m ) / 2 – m*V2² / 2 = (-m*g )*m*s
m*2*g*s * ( sinα + cosα*m ) – m*V2² = 2*(-m*g )*m*s
2*g*s * ( sinα + cosα*m ) – V2² = 2*(-g )*m*s
V2² = 2*g*s * ( sinα + cosα*m ) – 2*g*m*s
V2² = 2*g*s * ( sinα + cosα*m – m )
V2  = √ [2 * g * s * ( sinα + cosα*m – m )]

Jak wstawimy V2 do równania [1] to obliczymy szukaną początkową prędkość V:
m*2*g*s * ( sinα + cosα*m – m ) / 2  – m*V² / 2 = m*g*s*sinα – m*g*cosα*m*s

m*2*g*s * ( sinα + cosα*m – m ) – m*V²  = 2*m*g*s*sinα – 2*m*g*cosα*m*s

2*g*s * ( sinα + cosα*m – m ) – V²  = 2*g*s*sinα – 2*g*cosα*m*s

V² = 2*g*s * ( sinα + cosα*m – m ) – 2*g*s*sinα + 2*g*cosα*m*s

V² = 2*g*s * ( sinα + cosα*m – m – sinα + cosα*m )
V² = 2*g*s*m * ( 2*cosα – 1 )

Czyli prędkość początkowa jaką musi mieć pudło, żeby dojechać do punktu 4 wynosi:

V = √[2*g*s*m * ( 2*cosα – 1 )]

Prawda że łatwe ?