Private: Dynamika – regulator – zadanie 33

Mamy taki regulator, w którym belkę o masie m przymocowano przegubowo w 2/3 długości od dołu do wału.
dynamika12
Wał obraca się z prędkością kątową ω . Autor zadaje pytanie:

O JAKI KĄT α ODCHYLI SIĘ  BELKA?

Po pierwsze
Całość uwalniamy od więzów czyli:
– zastępujemy przegub dwiema prostopadłymi reakcjami
– przykładamy ciężar do belki
– ponieważ całość obraca się, to do belki przykładamy siły odśrodkowe bezwładności

dynamika13

Po drugie
Piszemy równania równowagi, a ponieważ jest to układ PŁASKI ROZBIEŻNY, to piszemy TRZY równania równowagi:
∑Pix = ∫dB –  ∫dB2 – Rx = 0 [1]
∑Piy = Ry – m*g = 0 [2]
∑Mio = ∫dB*x*cosα – m*g*L/6*sinα + ∫dB2*x2*cosα = 0 [3]

Po trzecie
W powyższych równaniach pojawiła się całka i teraz warto ją do końca policzyć, ale na początek dobrze będzie zająć się elementarną siłą dB czyli siłą odśrodkową bezwładności. To jest taka siła (mała siła), która działa na niewielką cząstkę belki o bardzo niewielkiej masie. Chodzi o to, że jak zsumujemy te wszystkie małe elementarne siły dB, to będziemy mieć sumaryczną siłę odśrodkową działającą na belkę.

dB = dm * ω² * x * sinα
Analogicznie elementarna siła odśrodkowa po krótszej stronie belki wyniesie:
dB2 = dm * ω² * x2 * sinα

Teraz stworzymy zależność która mówi, że

Elementarna masa dm ma się tak do całej masy belki m, jak elementarna długość dx do całkowitej długości L:

dm/m = dx / L

z tego wyciągamy dm:

dm = m * dx / L

i wstawiamy do obliczonych wcześniej elementarnych sił bezwładności:

dB = m/L * ω² * x *sinα* dx

dB2 = m/L * ω² * x2 *sinα* dx

Następnie robimy z tego całki i obliczamy je. Pierwsza całka oznaczona od zera do 2/3*L:
∫m/L*ω²*x*sinα dx = m/L*ω²*sinα*1/2*(2/3*L)²  = m/L*ω² *sinα*1/2*4/9*L²  =
= m*ω² *sinα*2/9*L

I druga całka oznaczona od zera do L/3:
∫m/L*ω² *x2*sinα dx = m/L*ω² *sinα*1/2*(L/2)² = m/L*ω²* sinα*1/2*L² /4 =

= m * ω² * sinα * L/8

Trzecia całka oznaczona od zera do 2/3*L:
∫dB*x*cosα = ∫m/L*ω² *x*sinα*dx*x*cosα = m/L*ω²* sinα*cosα*1/3*(2/3*L)³ =
= m*ω² *sinα*cosα*8/81*L²

Czwarta całka oznaczona od zera do L/3:
∫dB2*x2*cosα = ∫m/L*ω² *x2*sinα*dx*cosα x2 =
= m/L * ω² * sinα * cosα * 1/3 * (L/3)³ = m * ω² * sinα * cosα * L²/81

I teraz można to co wyszło z tych wszystkich całek wstawić do równania momentów:
∑Mio = m * ω² * sinα * cosα * 8/81 * L² – m * g * L/6 * sinα +
+ m * ω² * sinα * cosα * L²/81 = 0 [3]

ω² * cosα* 8/81 * L²  – g*L/6 + ω² * cosα * L²/81 = 0
ω² * cosα* 8/81 * L² + ω² * cosα * L²/81 = g*L/6
ω² * cosα* 9/81 * L² = g*L/6
I jak to sie to uprości to mamy coś takiego
cosα = 1,5 * g : ( ω² * L )
Wobec tego kąt odchylenia belki wyniesie:
a = arccos (1,5 * g : ( ω² * L ) )

Prawda że łatwe?

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Connecting to %s