Statyka – układ przestrzenny – zadanie 31

Jakiś czas temu było zadanie ze statyki z układów płaskich

 

a teraz zrobimy prosty układ przestrzenny.

Jest taka sobie klapa o masie m w kształcie trójkąta równoramiennego ułożyskowana na jednym z boków.
statyka22
Żeby się ta klapa trzymała w pozycji poziomej, to do jednego z wierzchołków przymocowano cięgno. Drugi koniec cięgna zamocowano do pionowej ściany na wysokości h równej długości boku trójkąta. Autor zadaje pytanie:

OBLICZ REAKCJE WIĘZÓW

Jasna sprawa że chodzi o:
– reakcje w łożyskach
– i siłę w cięgnie.

Po pierwsze

Uwalniamy od więzów czyli zastępujemy siłami łożyska i pręt, bo to łączy klapę ze światem zewnętrznym.
statyka23
W lewym łożysku będziemy mieć 3 reakcje ( 2 poprzeczne i jedna wzdłużna) ponieważ jest to łożysko poprzeczno-wzdłuzne. W prawym łożysku będą 2 prostopadłe reakcje w poprzek osi obrotu klapy, ponieważ jest to łożysko poprzeczne. Szósta reakcja jest siłą wzdłuż cięgna. Ciężar klapy przykładamy w środku ciężkości trójkąta czyli w 1/3 wysokości od podstawy.

Po drugie

Piszemy równania równowagi. Tutaj można napisać 6 równań ( trzy sumy rzutów sił na osie i trzy sumy momentów wokół osi) ponieważ jest to układ sił:
– przestrzenny
– rozbieżny – bo siły nie zbiegają się w jednym punkcie

Przy okazji warto określić położenie siły S a dokładnie kąt zawarty między siłą S a bokiem trójkąta.
Wiemy że zarówno podstawa jak i wysokość trójkąta mają długość h. Jak podzielimy trójkąt na pół to będziemy mieć 2 jednakowe trójkąty prostokątne.statyka24
Długości przyprostokątnych widzimy na rysunku powyżej a przeciwprostokątną obliczymy z twierdzenia Pitagorasa:
h² + (h/2)² = AC²
AC = √[h² + (h/2)² ] = √ [h² + h² /4 ] = √ [1,25*h² ]  = 1,12 * h

To już zrobione, to teraz trzeba obliczyć kąt między cięgnem-siłą S a obliczoną przeciwprostokątną AC.
statyka25
Jak widać na powyższym rysunku, jest to kąt między przeciwprostokątną klapy a jedną z przyprostokątnych kolejnego trójkąta prostokątnego ale tym razem takiego który jest umieszczony w pionie. Widać również, że mamy długości 2 boków, czyli możemy użyć trygonometrii. Jeżeli w trójkącie prostokątnym mamy kąt i 2 przyprostokątne, to z daleka widać, że to będzie tangens:
tgα = h : (1,12*h) = 0,893
czyli szukany kąt wynosi
α = arctg0,893 = 42°

Kolejna pomocnicza czynność to obliczenie kąta wierzchołkowego klapy w punkcie mocowania cięgna. Tutaj warto wrócić do połowy trójkąta równoramiennego-klapy czyli trójkąta prostokątnego ADC.

statyka26
Na rysunku powyżej oznaczono połowę kąta wierzchołkowego klapy jako β/2. Znamy wszystkie dlugości boków w trójkacie prostokatnym i jeżeli wiemy że do obliczenia kąta musimy użyć trygonometrii, to mozemy użyć dowolnej funkcji. Dla uproszczenia obliczeń użyjemy funkcji tangens:
tgβ/2 = 0,5*h / h = 0,5
β/2 = arctg0,5 = 26,5°
a więc szukany kąt wierzchołkowy trójkąta w punkcie mocowania cięgna wyniesie:
β = 53°
To jak już mamy wszystkie kąty i wzajemne położenie sił działających na klapę, to warto rozłożyć siłę w cięgnie S na dwie składowe, ponieważ nie jest ona równoległa do żadnej osi. Wiadomo tyle, że tworzy ona kąt a z bokiem AC trójkata, wobec tego rozkladamy ją  na 2 skladowe:
– pionową S*sinα
– równoległą do boku trójkata S*cos α

statyka27

To teraz piszemy równania równowagi i dobrze będzie zacząć od sumy momentów:
∑Mix = m*g*h/3 – S*sinα*h=0 [1]
Wiadomo, że siła daje moment względem osi jeżeli:
NIE PRZECINA osi
– lub NIE JEST RÓWNOLEGŁA do osi
Wobec tego moment względem osi x (osi obrotu klapy) dają ciężar m*g i siła w cięgnie S.
Wiadomo również, że:
MOMENT = SIŁA * RAMIĘ
oraz wiadomo również, że siła i ramię muszą być do siebie PROSTOPADŁE.
W nawiązaniu do powyższego równania momentów:
– ciężar m*g działa na ramieniu 1/3 wysokości trójkąta h (bo tutaj jest jego środek ciężkości)
– składowa S*sinα dziala na ramieniu h
I tutaj nalezy podkreślić, że składowa S*cosα nie daje momentu, ponieważ PRZECINA oś x. Jak już to wszystko wiadomo, to lecimy z pozostałymi osiami:
∑Miy = m*g*h/2 – S*sinα*h/2 – RBz*h = 0 [2]
Tutaj należy podkreślić że siły RAz i RAx nie dają momentów, bo przecinają oś y, a siły RAy i RBy też NIE dają momentów, ponieważ są do osi y RÓWNOLEGŁE.
No i została oś z:
∑Miz = RBy * h = 0 [3]
Sumy momentów są zrobione to teraz sumy rzutów sił:
∑Pix = RAx + S*cosα*sin β/2 = 0 [4]
∑Piy = RAy + RBy – S*cosα*cosβ/2 = 0 [5]
∑Piz = RAz + RBz – m*g + S*sinα = 0 [6]

Z powyższych 6 równań można wszystkie reakcje obliczyć. Z równania [1] obliczymy siłę w cięgnie:
m*g*h/3 = S*sinα*h
m*g = S*sinα*3
S = m*g : (3*sinα) = m*g : (3*sin42° ) = 0,5*m*g

Z równania [2] obliczymy reakcję RBz:
m*g*h/2 – S*sinα*h/2 = RBz*h
RBz = m*g/2 – S*sinα/2 = 0,5*m*g – 0,5*m*g*sin21° = 0,32*m*g
Z równania [3] wynika:
RBy = 0

Z równania [4] obliczymy reakcję RAx:
RAx = (-S)*cosα*sinβ/2 = (-m*g / (3*sin α) )*cosα*sinβ/2 =
= (-0,17)*m*g*ctgα*sinβ = (-0,17)*m*g*ctg42°*sin53° =
= (-0,15)*m*g

Z równania [5] obliczymy RAy:
RAy = (-RBy) + S*cosα*cosβ/2 = 0,17*m*g*ctgα*cosβ  =
= 0,17*m*g*ctg42°*cos53°  = 0,11*m*g

Z równania [6]obliczymy reakcję RAz:
RAz = (-RBz) + m*g – S*sinα = (-m)*g/2 + S*sinα/2 + m*g – S*sinα =
= S*(sinα /2-sinα) + 0,5*m*g =
= m*g / (3*sinα)*(sinα/2-sinα) + 0,5*m*g =
= 0,33*m*g * sin21° / sin42° + 0,17*m*g = 0,35*m*g

Prawda że łatwe?

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Connecting to %s