Private: Dynamika – regulator – zadanie 33

Mamy taki regulator, w którym belkę o masie m przymocowano przegubowo w 2/3 długości od dołu do wału.
dynamika12 - Private: Dynamika – regulator – zadanie 33
Wał obraca się z prędkością kątową ω . Autor zadaje pytanie:

O JAKI KĄT α ODCHYLI SIĘ  BELKA?

Po pierwsze
Całość uwalniamy od więzów czyli:
– zastępujemy przegub dwiema prostopadłymi reakcjami
– przykładamy ciężar do belki
– ponieważ całość obraca się, to do belki przykładamy siły odśrodkowe bezwładności

dynamika13 - Private: Dynamika – regulator – zadanie 33

Po drugie
Piszemy równania równowagi, a ponieważ jest to układ PŁASKI ROZBIEŻNY, to piszemy TRZY równania równowagi:
∑Pix = ∫dB –  ∫dB2 – Rx = 0 [1]
∑Piy = Ry – m*g = 0 [2]
∑Mio = ∫dB*x*cosα – m*g*L/6*sinα + ∫dB2*x2*cosα = 0 [3]

Po trzecie
W powyższych równaniach pojawiła się całka i teraz warto ją do końca policzyć, ale na początek dobrze będzie zająć się elementarną siłą dB czyli siłą odśrodkową bezwładności. To jest taka siła (mała siła), która działa na niewielką cząstkę belki o bardzo niewielkiej masie. Chodzi o to, że jak zsumujemy te wszystkie małe elementarne siły dB, to będziemy mieć sumaryczną siłę odśrodkową działającą na belkę.

dB = dm * ω² * x * sinα
Analogicznie elementarna siła odśrodkowa po krótszej stronie belki wyniesie:
dB2 = dm * ω² * x2 * sinα

Teraz stworzymy zależność która mówi, że

Elementarna masa dm ma się tak do całej masy belki m, jak elementarna długość dx do całkowitej długości L:

dm/m = dx / L

z tego wyciągamy dm:

dm = m * dx / L

i wstawiamy do obliczonych wcześniej elementarnych sił bezwładności:

dB = m/L * ω² * x *sinα* dx

dB2 = m/L * ω² * x2 *sinα* dx

Następnie robimy z tego całki i obliczamy je. Pierwsza całka oznaczona od zera do 2/3*L:
∫m/L*ω²*x*sinα dx = m/L*ω²*sinα*1/2*(2/3*L)²  = m/L*ω² *sinα*1/2*4/9*L²  =
= m*ω² *sinα*2/9*L

I druga całka oznaczona od zera do L/3:
∫m/L*ω² *x2*sinα dx = m/L*ω² *sinα*1/2*(L/2)² = m/L*ω²* sinα*1/2*L² /4 =

= m * ω² * sinα * L/8

Trzecia całka oznaczona od zera do 2/3*L:
∫dB*x*cosα = ∫m/L*ω² *x*sinα*dx*x*cosα = m/L*ω²* sinα*cosα*1/3*(2/3*L)³ =
= m*ω² *sinα*cosα*8/81*L²

Czwarta całka oznaczona od zera do L/3:
∫dB2*x2*cosα = ∫m/L*ω² *x2*sinα*dx*cosα x2 =
= m/L * ω² * sinα * cosα * 1/3 * (L/3)³ = m * ω² * sinα * cosα * L²/81

I teraz można to co wyszło z tych wszystkich całek wstawić do równania momentów:
∑Mio = m * ω² * sinα * cosα * 8/81 * L² – m * g * L/6 * sinα +
+ m * ω² * sinα * cosα * L²/81 = 0 [3]

ω² * cosα* 8/81 * L²  – g*L/6 + ω² * cosα * L²/81 = 0
ω² * cosα* 8/81 * L² + ω² * cosα * L²/81 = g*L/6
ω² * cosα* 9/81 * L² = g*L/6
I jak to sie to uprości to mamy coś takiego
cosα = 1,5 * g : ( ω² * L )
Wobec tego kąt odchylenia belki wyniesie:
a = arccos (1,5 * g : ( ω² * L ) )

Prawda że łatwe?

Trójkierunkowy stan naprężenia – zadanie 32

Witam ponownie i dzisiaj zrobimy zadanie z trójkierunkowego stanu naprężenia:

https://blog-student.com/wytrzymalosc-trojkierunkowy-stan-naprezenia-zadanie-31/

Mamy walec o średnicy D i wysokości 2*D i na ten walec od góry naciska siła F. Dany jest modul Younga E, stala Poissona dla materialu walca.

rozciaganie20 - Trójkierunkowy stan naprężenia - zadanie 32

Autor zadaje pytanie:

OBLICZ ZMIANĘ POLA POWIERZCHNI WALCA PO PRZYŁOŻENIU SIŁY F

Po pierwsze – warto sobie obrać układ współrzędnych

i niech o osie x i y będą leciały równolegle do podstawy, a oś z będzie jednocześnie osią walca i będzie leciała do góry.

Po drugie – piszemy 3 równania opisujące trójkierunkowy stan naprężenia

x = x/E – *y/E – *z/E [1]

y = y/E – *x/E – *z/E [2]

z = z/E – *x/E – *y/E [3]

i tak jak wcześniej mówiliśmy te 3 równania ZAWSZE wystąpią w tego typu zadaniach. I teraz jak spojrzymy na nie dokładniej to widać że mamy 6 niewiadomych:

– odkształcenia względne wzdłuż 3 osi – x, y , z

– naprężenia wzdłuż 3 osi – x , y , z

I teraz to zaczyna być logiczne, że potrzebujemy 6 równań żeby policzyć 6 niewiadomych. A ponieważ już mamy 3 (te powyżej) , to musimy

Po trzecie

wymyśleć 3 dodatkowe.

Wiadomo że wzdłuż osi równoległych do podstawy naprężenie wynosi ZERO, ponieważ na tworzącą walca (boki walca) nic nie naciska.

x = 0 [4]

σy = 0  [5]

Wiadomo że naprężenie wzdłuż osi z (osi walca – w pionie) wyniesie tyle co siła F podzielona przez pole podstawy walca.

z = F : ( 0,25 * * D) = 1,3*F : D2

Po czwarte – mamy teraz 6 równań i 6 niewiadomych .

Jak wstawimy równania [4] , [5] i [6] do równań [1] , [2] oraz [3] to dalej pójdzie z górki:

x = /E – */E – *1,3*F / ( E * D2 ) [1]

y = /E – */E – *1,3*F / ( E * D2 ) [2]

z = 1,3*F / ( E * D2 ) – */E – */E [3]

Po uproszczeniu to wygląda trochę lepiej:

x = (- *1,3*F / ( E * D2 ) [1]

y = (- *1,3*F / ( E * D2 ) [2]

z = 1,3*F / ( E * D2 ) [3]

Jak widać powyżej, mamy już policzone odkształcenia względne we wszystkich kierunkach, czyli o ile PROCENTOWO zmienią się wszystkie prostopadłe do siebie wymiary walca – średnica i wysokość.

Dodatkowo wiemy, że średnica wynosiła D, a jak nacisnęliśmy walec od góry siła F to średnica (która się zwiększyła) wyniosła:

D + D * x = D + D* *1,3*F / ( E * D2 ) = D + * 1,3 * F / ( E * D )

czyli suma początkowej średnicy D i tego odcinka o ile ona się zwiększyła.

Wysokość zmniejszy się i wyniesie:

2*D – 2*D*z = 2*D – 2*D*1,3*F / ( E * D2 ) =

= 2*D – 2,6*F / ( E * D )

czyli początkowa wysokość 2*D minus to o ile walec zmniejszył wysokość.

Pole powierzchni jest sumą

powierzchni tworzącej

oraz

dwukrotnej powierzchni podstawy:

S = 2 * * D2 : 4 + D * * 2 * D = 0,25 * * D2 + * 2 * D2 =

= 2,25 * * D2

Po odkształceniu to samo pole wyniesie:

S + S = 2,25 * * ( D + * 1,3 * F / ( E * D ))2

Czyli zmiana pola wyniesie:

S = 2,25 * * ( D + * 1,3 * F / ( E * D ))2 – 2,25 * * D2

Prawda że łatwe?

Statyka – układ przestrzenny – zadanie 31

Jakiś czas temu było zadanie ze statyki z układów płaskich a teraz zrobimy prosty układ przestrzenny.

Jest taka sobie klapa o masie m w kształcie trójkąta równoramiennego ułożyskowana na jednym z boków.
statyka22 - Statyka – układ przestrzenny – zadanie 31
Żeby się ta klapa trzymała w pozycji poziomej, to do jednego z wierzchołków przymocowano cięgno. Drugi koniec cięgna zamocowano do pionowej ściany na wysokości h równej długości boku trójkąta. Autor zadaje pytanie:

OBLICZ REAKCJE WIĘZÓW

Jasna sprawa że chodzi o:
– reakcje w łożyskach
– i siłę w cięgnie.

Po pierwsze – uwalniamy od więzów

czyli zastępujemy siłami łożyska i pręt, bo to łączy klapę ze światem zewnętrznym.
statyka23 - Statyka – układ przestrzenny – zadanie 31
W lewym łożysku będziemy mieć 3 reakcje ( 2 poprzeczne i jedna wzdłużna) ponieważ jest to łożysko poprzeczno-wzdłużne. W prawym łożysku będą 2 prostopadłe reakcje w poprzek osi obrotu klapy, ponieważ jest to łożysko poprzeczne. Szósta reakcja jest siłą wzdłuż cięgna. Ciężar klapy przykładamy w środku ciężkości trójkąta czyli w 1/3 wysokości od podstawy.

Po drugie

Tutaj można napisać 6 równań ( trzy sumy rzutów sił na osie i trzy sumy momentów wokół osi) ponieważ jest to układ sił:
– przestrzenny
– rozbieżny – bo siły nie zbiegają się w jednym punkcie

Przy okazji warto określić położenie siły S a dokładnie kąt zawarty między siłą S a bokiem trójkąta.
Wiemy że zarówno podstawa jak i wysokość trójkąta mają długość h. Jak podzielimy trójkąt na pół to będziemy mieć 2 jednakowe trójkąty prostokątne

 

statyka24 - Statyka – układ przestrzenny – zadanie 31
Długości przyprostokątnych widzimy na rysunku powyżej a przeciwprostokątną obliczymy z twierdzenia Pitagorasa:
h² + (h/2)² = AC²
AC = √[h² + (h/2)² ] = √ [h² + h² /4 ] = √ [1,25*h² ]  = 1,12 * h

To już zrobione, to teraz trzeba obliczyć kąt między cięgnem-siłą S a obliczoną przeciwprostokątną AC.
statyka25 - Statyka – układ przestrzenny – zadanie 31
Jak widać na powyższym rysunku, jest to kąt między przeciwprostokątną klapy a jedną z przyprostokątnych kolejnego trójkąta prostokątnego ale tym razem takiego który jest umieszczony w pionie. Widać również, że mamy długości 2 boków, czyli możemy użyć trygonometrii. Jeżeli w trójkącie prostokątnym mamy kąt i 2 przyprostokątne, to z daleka widać, że to będzie tangens:
tgα = h : (1,12*h) = 0,893
czyli szukany kąt wynosi
α = arctg0,893 = 42°

Kolejna pomocnicza czynność to obliczenie kąta wierzchołkowego klapy w punkcie mocowania cięgna. Tutaj warto wrócić do połowy trójkąta równoramiennego-klapy czyli trójkąta prostokątnego ADC.

statyka26 - Statyka – układ przestrzenny – zadanie 31
Na rysunku powyżej oznaczono połowę kąta wierzchołkowego klapy jako β/2. Znamy wszystkie długości boków w trójkącie prostokątnym i jeżeli wiemy że do obliczenia kąta musimy użyć trygonometrii, to możemy użyć dowolnej funkcji. Dla uproszczenia obliczeń użyjemy funkcji tangens:
tgβ/2 = 0,5*h / h = 0,5
β/2 = arctg0,5 = 26,5°
a więc szukany kąt wierzchołkowy trójkąta w punkcie mocowania cięgna wyniesie:
β = 53°
To jak już mamy wszystkie kąty i wzajemne położenie sił działających na klapę, to warto rozłożyć siłę w cięgnie S na dwie składowe, ponieważ nie jest ona równoległa do żadnej osi. Wiadomo tyle, że tworzy ona kąt a z bokiem AC trójkąta, wobec tego rozkładamy ją  na 2 składowe:
– pionową S*sinα
– równoległą do boku trójkąta S*cos α

statyka27 - Statyka – układ przestrzenny – zadanie 31

Po trzecie – to teraz piszemy równania równowagi statycznej dla tego układu

i dobrze będzie zacząć od sumy momentów:
∑Mix = m*g*h/3 – S*sinα*h=0 [1]
Wiadomo, że siła daje moment względem osi jeżeli:
NIE PRZECINA osi
– lub NIE JEST RÓWNOLEGŁA do osi
Wobec tego moment względem osi x (osi obrotu klapy) dają ciężar m*g i siła w cięgnie S.
Wiadomo również, że:
MOMENT = SIŁA * RAMIĘ
oraz wiadomo również, że siła i ramię muszą być do siebie PROSTOPADŁE.
W nawiązaniu do powyższego równania momentów:
– ciężar m*g działa na ramieniu 1/3 wysokości trójkąta h (bo tutaj jest jego środek ciężkości)
– składowa S*sinα działa na ramieniu h
I tutaj należy podkreślić, że składowa S*cosα nie daje momentu, ponieważ PRZECINA oś x. Jak już to wszystko wiadomo, to lecimy z pozostałymi osiami:
∑Miy = m*g*h/2 – S*sinα*h/2 – RBz*h = 0 [2]
Tutaj należy podkreślić że siły RAz i RAx nie dają momentów, bo przecinają oś y, a siły RAy i RBy też NIE dają momentów, ponieważ są do osi y RÓWNOLEGŁE.
No i została oś z:
∑Miz = RBy * h = 0 [3]
Sumy momentów są zrobione to teraz sumy rzutów sił:
∑Pix = RAx + S*cosα*sin β/2 = 0 [4]
∑Piy = RAy + RBy – S*cosα*cosβ/2 = 0 [5]
∑Piz = RAz + RBz – m*g + S*sinα = 0 [6]

I oto mamy wszystkie równania statyczne dla tego układu. Z powyższych 6 równań można wszystkie reakcje obliczyć. Z równania [1] obliczymy siłę w cięgnie:
m*g*h/3 = S*sinα*h
m*g = S*sinα*3
S = m*g : (3*sinα) = m*g : (3*sin42° ) = 0,5*m*g

Z równania [2] obliczymy reakcję RBz:
m*g*h/2 – S*sinα*h/2 = RBz*h
RBz = m*g/2 – S*sinα/2 = 0,5*m*g – 0,5*m*g*sin21° = 0,32*m*g
Z równania [3] wynika:
RBy = 0

Z równania [4] obliczymy reakcję RAx:
RAx = (-S)*cosα*sinβ/2 = (-m*g / (3*sin α) )*cosα*sinβ/2 =
= (-0,17)*m*g*ctgα*sinβ = (-0,17)*m*g*ctg42°*sin53° =
= (-0,15)*m*g

Z równania [5] obliczymy RAy:
RAy = (-RBy) + S*cosα*cosβ/2 = 0,17*m*g*ctgα*cosβ  =
= 0,17*m*g*ctg42°*cos53°  = 0,11*m*g

Z równania [6]obliczymy reakcję RAz:
RAz = (-RBz) + m*g – S*sinα = (-m)*g/2 + S*sinα/2 + m*g – S*sinα =
= S*(sinα /2-sinα) + 0,5*m*g =
= m*g / (3*sinα)*(sinα/2-sinα) + 0,5*m*g =
= 0,33*m*g * sin21° / sin42° + 0,17*m*g = 0,35*m*g

Prawda że łatwe?