Wytrzymałość – zadanie 27 – rozciąganie – układ statycznie niewyznaczalny

No i mamy kolejne

Wytrzymałość – rozciąganie – układ statycznie niewyznaczalny – zadanie 18

ciekawe zadanie z układów statycznie niewyznaczalnych. 3 pręty połączone przegubem obciążono w tym samym przegubie siłą P.
rozciaganie10
Autor zadaje pytanie:

OBLICZ SIŁY W PRĘTACH

Tradycyjnie uwalniamy węzeł od więzów, czyli zastępujemy pręty siłami.
rozciaganie11
Jak widać, powstał układ PŁASKI ZBIEŻNY i można tutaj napisać DWA równania równowagi:
– suma rzutów na oś x
– suma rzutów na oś y

∑Pix = S2 * sinα – S3 * sinα = 0 [1]
∑Piy = S1 – P + S2 * cosα – S3 * cosα = 0 [2]

Napisaliśmy 2 równania równowagi, bo tyle można było, a niewiadomych jest 3:
S1 , S2 oraz S3
a więc tak jak już było mówione, jest to zadanie STATYCZNIE NIEWYZNACZALNE.
Wobec powyższego musimy zrobić jeszcze jedno TRZECIE równanie i w tym przypadku będzie ono związane z odkształceniami.
rozciaganie12
Na rysunku powyżej widać pręty nr 2 i 3 przed odkształceniem i po odkształceniu.

Tak jak widać, węzeł przesunął się pionowo w dół (z punktu A do punktu A’) zgodnie z kierunkiem działania siły. To pionowe przesunięcie jest równe wydłużeniu pręta nr 1 (tego pionowego).

Ze skośnymi prętami nr2 i nr3 jest troche trudniej:
Linią ciągłą widać pręty przed odkształceniem, a linią przerywaną widać pręty po odkształceniu.

Oba pręty po odkształceniu leżą POD TYM SAMYM KĄTEM, ale jak widać pręt nr 3 skrócił się, a pręt nr 2 wydłużył. Tylko teraz powstaje pytanie, o ile sie wydłużył:
Widać obok siebie pręt nr 2 przed odkształceniem i obok widać ten sam pręt po odkształceniu (linią przerywaną).

No to jak 2 pręty leżą obok siebie , to widać który jest dłuższy – dłuższy jest pręt nr 2 po odkształceniu.

Żeby było jeszcze ciekawiej , to widać o ile pręt nr 2 się wydłużył – zmienił swoją długość o ΔL2.

A najlepsze jest to że o tyle samo skrócił się  pręt nr 3:
ΔL2 = ΔL3
Można by się zapytać, dlaczego oba pręty zmieniły swoją długość o taki sam odcinek, ale też jest proste:
Bo są do siebie równoległe, przy czym każdy przypadek układu prętów należy rozpatrywać indywidualnie.
To teraz jak już mamy narysowane jak leżą i jak wydłużają się poszczególne pręty, to teraz napiszemy najprostszą zależność która wiąże poszczególne odkształcenia.

I ta TRZECIA zależność powstała przy okazji, ponieważ widzimy trójkąt prostokątny (ten czerwony), w którym przeciwprostokątną jest ΔL1, a jedną  z przyprostokątnych jest ΔL2 = ΔL3.

rozciaganie14

Jak mamy trójkąt prostokątny to z daleka już czuć TRYGONOMETRIĘ, a więc postawmy tutaj takie pytanie:
W jakiej funkcji trygonometrycznej występują te 2 boki trójkąta? Jak się tak dobrze przyjrzeć to można zobaczyć, że to będzie cosinus:

cosα = ΔL2 : ΔL1
Można to zapisać inaczej:
ΔL2 = ΔL1 * cosα

To teraz jeżeli mamy równanie, w którym są odkształcenia rozciąganych prętów, to wstawimy w to znane już prawo Hooke’a:

 

siła w pręcie * długość pręta
wydłużenie = —————————————————————————-
moduł Younga * przekrój pręta

 

S2 * L/cosα        S1 * L/cosα
——————- = ——————– * cosα
E * F                    E * F

 

S2 * L/cosα           S1 * L
——————- = —————
E * F                    E * F
Dzielimy obie strony równania przez L i mnożymy przez E*F:
S2 / cosα = S1

i to jest TRZECIE równanie, którego tak poszukiwaliśmy.

Teraz mając 3 niewiadome siły w 3 prętach i 3 równania możemy łatwo te siły obliczyć:
∑Pix = S2 * sinα – S3 * sinα = 0 [1]
∑Piy = S1 – P + S2 * cosα – S3 * cosα = 0 [2]
S2 /cosα = S1 [3]

Upraszczamy równanie [1]:
S2 * sinα = S3 * sinα
S2 = S3
i wstawiamy do [2]:
S1 – P + S3 * cosα – S3 * cosα = 0
S1 – P  = 0
Siła w pręcie nr1 wyniesie:
S1 = P

Z równania [3] wynikają siły w prętach nr2 i nr3:
S2 = cosa * S1 = S3

Prawda że łatwe?

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Connecting to %s