Statyka – kratownica płaska – zadanie 22

O statyce już było i to nie raz ale teraz zadanie z kratownic. I na początek warto powiedzieć, co to jest kratownica:

Mówiąc prosto bierzemy kilka lub kilkanaście lub jeszcze więcej prętów i łączymy je przegubowo w taki sposób, że tworzą one sztywny element i przykładem pierwszym z brzegu niech będzie trójkąt stworzony z 3 prętów połączony przegubowo w 3 punktach.

statyka13

Te punkty połączenia dalej będziemy nazywać WĘZŁAMI. Jasna sprawa że większość kratownic to układy prętowe znacznie bardziej skomplikowane niż taki sobie zwykły trójkąt. I teraz może takie proste zadanie:

statyka14

Tak jak widać na rysunku powyżej mamy kratownicę zamocowaną w dwóch podporach (jednej stałej i drugiej przesuwnej) oraz obciążoną dwiema pionowymi siłami F. Autor zadania zadaje proste pytanie:

OBLICZ SIŁY W PRĘTACH

Zrobimy to w kilku prostych krokach metodą RÓWNOWAGI WĘZŁÓW.

 

Po pierwsze

 

Uwalniamy CAŁĄ kratownicę od więzów, czyli zastępujemy siłami to, co ją łączy ze światem zewnętrznym. W tym przypadku kratownica jest mocowana do podłoża dwiema podporami:

– podpora przegubowa stała – zamiast niej rysujemy 2 prostopadłe do siebie reakcje

– podpora przegubowa przesuwna – zastępujemy ją siłą prostopadłą do 2 równoległych kresek

statyka15

Po drugie

 

Piszemy równania równowagi statycznej i teraz spójrzmy jakie widzimy siły:

RA, RBx, RBy oraz 2 siły F i co najważniejsze te siły nie zbiegają się w jednym punkcie, czyli mamy układ PŁASKI ROZBIEŻNY – a więc piszemy 3 równania równowagi (2 sumy rzutów sił i sumę momentów).

Mechanika – statyka – zaczynamy od podstaw

Sumę momentów warto obliczyć względem punktu, przez który przechodzi NAJWIĘCEJ niewiadomych – w tym przypadku będzie to punkt B – RBx oraz RBy

MiB = F * L + F * 2 * L + RA * 3 * L = 0

ponieważ w ten sposób od razu obliczymy reakcję w drugiej podporze:

F * 3 * L + RA * 3 * L = 0

F + RA = 0

która wynosi:

RA = (-F)

Następnie piszemy sumy rzutów sił na osie , z których obliczymy reakcje w podporze B:

Pix = RBx = 0

Piy = (-RA) – F – F – RBy = 0

RBy = (-(-F)) – F – F = (-F)

 

Po trzecie

 

Jak już są obliczone reakcje zewnętrzne działające na kratownicę jako całość, to rozkładamy układ ZŁOŻONY – całą kratownicę na układy PROSTE – poszczególne węzły. W tym celu warto oznaczyć każdy z węzłów literą, a każdy z prętów cyfrą. 

statyka16

UWALNIAMY OD WIĘZÓW każdy węzeł czyli ZASTĘPUJEMY siłami pręty, które do niego dochodzą. Na wstępie możemy zacząć od węzła A, ponieważ dochodzą do niego DWA pręty, czyli w równaniach równowagi będą DWIE niewiadome siły.

statyka17

Jak mamy taki węzeł A uwolniony od więzów, to widać, że wszystkie siły zbiegają się w jednym punkcie, czyli mamy układ PŁASKI ZBIEŻNY – wobec tego piszemy DWA równania równowagi – sumy rzutów sił na osie. I teraz równania równowagi:

Piy = S2 * cos45o – RA = 0

Z pierwszego równania obliczamy siłę w pierwszym pręcie:

S2 * cos45º = RA

S2 = RA : cos45º = (-F) : cos45º = (-1,4*F)

Pix = S1 + S2 * sin45º = 0

S1 = (-S2) * sin45º = (-(-1,4*F)) * sin45º = F

I teraz przechodzimy do węzła C, ponieważ mając siłę w drugim pręcie będziemy mieć 2 niewiadome.

statyka18

Czyli od teraz do samego końca wszystko będzie przebiegać analogicznie:

Pix = S3 – S2 * sin45º = 0

S3 = S2 * sin45º = (-1,4*F) * sin45º = (-F)

Piy = (-S4) – S2 * cos45º = 0

S4 = (-S2) * cos45º = (-(-1,4*F)) * cos45º = F

Analogicznie postępujemy dla pozostałych węzłów:

 

Węzeł D:

statyka19

Piy = S4 – F + S6 * cos45º = 0

(-S4) + F = S6 * cos45º

(-F) + F = S6 * cos45º==> S6 = 0

Pix = S5 – S1 + S6 * sin45º = 0

S5 – F + 0 * sin45º = 0

S5 = F

 

Węzeł E:

Pix = S7 * sin45º – S5 =0

S7 * sin45º = S5

S7 = S5 : sin45º = F : sin45º = 1,4*F

Piy = S7 * cos45º + S8 = 0

S8 = (-S7) * cos45º = (-1,4*F) * cos45º = (-F)

 

Węzeł B:

statyka21

Ostatni węzeł i tu wystarczy suma rzutów sił na oś x, bo pozostała do obliczenia jeszcze jedna siła w pręcie:

Pix = RBx – S9 – S7 * sin45º = 0

0 – S9 – 1,4 * F * sin45º = 0

S9 = (-1,4) * F * sin45º = (-F)

I w taki prosty sposób obliczyliśmy siły we wszystkich prętach

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Connecting to %s