Kinematyka – zadanie 17

Zadanie jest bardzo proste i dotyczy podstaw kinematyki:

Pod sufitem wisi lampa i spod tej lampy startuje człowiek idąc w prawo ze stałą prędkością V.

kinematyka4

Lampa się świeci, a więc człowiek rzuca cień. Idąc w prawo człowiek oddala się od lampy i cień będzie coraz dłuższy. Wysokość człowieka wynosi hc, a lampa wisi na wysokości H. I teraz jest pytanie:

OBLICZ PRĘDKOŚĆ KOŃCA CIENIA

Człowiek idzie ruchem jednostajnym czyli można obliczyć jego drogę w czasie t:

s = V * t

kinematyka5

I teraz można przez sc oznaczyć drogę końca cienia.

kinematyka6

Teraz mamy same długości czyli jest to czysta geometria i widać że można użyć tutaj twierdzenie Talesa:

 

H-hc           H

———-  =  ——-

V*t              sc

 

Z tego już się obliczy drogę końca cienia:

sc = V*t*H / ( H-hc )

Jak już jest droga końca cienia, to można obliczyć prędkość końca cienia i jest to pochodna drogi po czasie:

Vc = = V*H / ( H-hc )

Prawda że proste?

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

w

Connecting to %s