Wytrzymałość-rozciąganie-zadanie 5

Poprzednio rozpoczęliśmy podstawy wytrzymałości a teraz może zadanie z rozciągania:

rozciaganie1

  Mamy dane przekroje pręta A, moduł Younga E, siłę P i długość l. Pytają się o reakcje utwierdzenia w suficie i podłodze

O co tutaj chodzi? Ktoś wziął pręt o zmiennym przekroju, jednym końcem przyspawał do podłogi, a górnym końcem przyspawał do sufitu. Jak widać na rysunku całą wysokość pręta podzielono na 3 przedziały i na granicy pierwszego i drugiego oraz drugiego i trzeciego przedziału przyłożono siły 4*P oraz P.

Po pierwsze uwalniamy słup od więzów, czyli zastępujemy sufit i podłogę siłami utwierdzenia obojętnie w którą stronę, ale później się tego trzymamy.

Gdy są już reakcje utwierdzenia to można napisać sumę rzutów sił na oś y, która leży w pionie (w osi słupa):

Piy = P + S1 – 4*P – S2 = 0

Przyjmujemy że siła do góry jest z PLUSEM a siła w dół jest z MINUSEM. Potem można powyższe równanie uprościć i dostaniemy to co poniżej:

Piy = S1 – 3*P – S2 = 0 (1)

W tym równaniu są 2 niewiadome: S1 i S2. Aby je obliczyć musi być kolejne równanie. Tym razem GEOMETRYCZNE mówiące, że

suma wydłużeń poszczególnych odcinków (a są trzy i każdy o długości l) musi być równa ZERO.

To jest tak, że jak pierwszy odcinek wydłuży się o 1mm, drugi odcinek wydłuży się o 2mm, to trzeci odcinek skróci się o 3mm.A to dlatego że odległość między podłogą i sufitem zawsze będzie 3*l:

l1 + l2 + l3 = 0

gdzie l to poszczególne wydłużenia poszczególnych odcinków

Teraz trzeba użyć prawa Hooke’a które mówi:

siła * długość pręta

wydłużenie      =    ————————————————————————–

moduł Younga * pole przekroju

Ponieważ mamy 3 przedziały, to w każdym z nich musimy określić siłę rozciągającą czyli siłę normalną. Żeby sobie ułatwić to można użyć kawałka kartki, którym będziemy zakrywać część słupa.

Dla pierwszego przedziału (patrząc od góry) zakrywamy tak, żeby widzieć kawałek tego pierwszego przedziału. Teraz przepisujemy siły, które widzimy – no i widzimy S1:

N1 = S1

Następnie odsłaniamy trochę więcej słupa w taki sposób, żeby widzieć pierwszy przedział (licząc od góry) i kawałek drugiego przedziału. I oto co widzimy:

N2 = S1 – 4*P

W kolejnym kroku odsłaniamy jeszcze więcej słupa, tak żeby całkowicie widzieć pierwszy i drugi przedział (licząc od góry) oraz kawałek trzeciego. Siły normalne w trzecim przedziale:

N3 = S1 – 4*P + P = S1 – 3*P

Teraz już mając siły w poszczególnych przedziałach (N), długości tych przedziałów (l), moduł Younga (E) oraz przekroje (A) w każdym z przedziałów można to wszystko wstawić do prawa Hooke i równania geometrycznego:

N1*l             N2*l              N3*l

———- + ————– + ————- = 0

E*2*A         E*2*A            E*A

Po wstawieniu wartości sił normalnych wyjdzie coś takiego:

S1*l            (S1-4*P)*l            (S1-3*P)*l

———- + ——————– + ——————– = 0

E*2*A              E*2*A                   E*A

Teraz dobrze będzie to wszystko uprościć, czyli mnożymy obie strony przez (E*A) i dzielimy przez l:

S1             (S1-4*P)        S1-3*P

—– + —————— + —————- = 0 (2)

2                   2                    1

Z tego wszystkiego można wyciągnąć reakcję utwierdzenia S1:

2*S1 = 5*P

S1 = 2,5*P

Reakcję S1 wstawiamy do sumy rzutów na oś y i obliczamy z tego S2:

S1 – 3*P – S2 = 0

S1 – 3*P = S2

S2 = 2,5*P – 3*P = (-0,5*P)

Reakcje utwierdzenia wynoszą: S1 = 2,5*P oraz S2 = (-0,5*P).

 

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

w

Connecting to %s