Kinematyka-zadanie 2-obliczenie prędkości w ruchu płaskim

Tak żeby w praktyce sprawdzić podstawy, o których była mowa wcześniej, dobrze będzie rozwiązać zadanie z kinematyki, a dokładniej z ruchu płaskiego.

mechanika wstep 4

Oto typowe zadanie jakich tysiące:

Linka lub nić nawinięta na walec (lub szpulkę) o promieniu r. Koniec nici ma prędkość V i widać że nić będzie się odwijać i walec będzie się toczyć w prawo. I jest pytanie:

OBLICZ PRĘDKOŚĆ PUNKTU A

Widać, że punkt A znajduje się na godzinie dziewiątej. Za chwile pojawi się takie określenie jak

TOCZENIE BEZ POŚLIZGU-

– to znaczy dokładnie tyle że walec toczy się po powierzchni i nic się wzajemnie nie ślizga. I teraz kolejne ważne określenie czyli

CHWILOWY ŚRODEK OBROTU

– to znaczy tyle że koło ma tylko jeden punkt styku z powierzchnią i to jest dokładnie ten ŚRODEK czyli punkt C, wokół którego cały walec się CHWILOWO kręci.

I to co bardzo ważne – CHWILOWY ŚRODEK OBROTU zawsze ma prędkość równą zero czyli Vc=0 – a to dlatego że TEN punkt styka się z powierzchnią, no to musi mieć taką samą prędkość jak powierzchnia ziemi – czyli ZERO.
Na początku ustaliliśmy, że walec porusza się ruchem PŁASKIM czyli jednocześnie ruchem POSTĘPOWYM i OBROTOWYM. A jeżeli jest ruch obrotowy to jest prędkość kątowa i tą prędkość kątową trzeba policzyć żeby coś dalej ruszyć.

A co wiadomo na temat prędkości?

Wiadomo że koniec nici nawiniętej na walec jedzie z prędkością V, a ponieważ nitka się nie rozciąga to na całej długości mamy prędkość V, i tak samo z prędkością V porusza się najwyższy punkt koła czyli punkt B (  tak tak chodzi o ten punkt na godzinie dwunastej). A więc:

Vb = V

Jeżeli punkt jedzie w prawo z prędkością V a CHWILOWY ŚRODEK OBROTU ma prędkość zero, to można napisać zależność między prędkością liniową a kątową:
Vb = omega * 2*r
Czyli prędkość liniowa

to

iloczyn prędkości kątowej i odległości punktu od CHWILOWEGO ŚRODKA OBROTU

I z tego wzoru można obliczyć prędkość kątową walca:
omega = 0,5 * Vb : r
I jak już mamy prędkość kątową to można obliczyć prędkość punktu A z tej samej zależności – prędkość punktu A jest iloczynem prędkości kątowej walca i odległości punktu A od CHWILOWEGO ŚRODKA OBROTU:
Va = omega * OA

Teraz obliczyliśmy prędkość a następnym razem zajmiemy się przyspieszeniem.

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

w

Connecting to %s