Mechanika – środek ciężkości – zadanie 16

Na początek powiedzmy sobie co to jest środek ciężkości:

Bierzemy do ręki kawałek płaskiej blachy albo deski i jeżeli podeprzemy gdzieś pod spodem tak, żeby to się nie przewróciło, to w tym miejscu będzie środek ciężkości.

srodekciezkosci1

I tutaj mamy taki element o podanych wymiarach. Oto jak sobie poradzić z obliczeniem środka ciężkości:

1. Dzielimy go na kilka prostszych elementów, czyli w tym przypadku na przykład trójkąt (o podstawie 2*a i wysokości a) i półkole o promieniu a.

srodkiciezkosci2

To wszystko dlatego, że znamy położenie środka ciężkości prostych elementów takich jak koło, prostokąt czy trójkąt.

 

2. Umieszczamy tak podzieloną figurę w układzie współrzędnych. Tylko teraz powstaje pytanie jak to umieścić?

srodkiciezkosci3

Najlepiej umieścić figurę nad osia x i jeżeli figura jest symetryczna, to oś symetrii powinna pokrywac się z osią ”y”.

3. Kolejny etap to działamy według prostego wzoru

 

pole półkola * ś.c.półkola + pole trójkąta * ś.c.trójkąta

yc = ———————————————————————————————

całkowite pole figury

 

To teraz mały komentarz do powyższego wzoru:

Środek ciężkości na przykład półkola lub trójkąta określamy w tym układzie współrzędnych, w którym tę figurę wstawiliśmy. Wiemy że środek ciężkości trójkąta jest 1/3 wysokości od podstawy, ale w tym przypadku ma on współrzędną równą 2/3*a, ponieważ trójkąt stoi podstawą do góry.

Środek ciężkości półkola znajduje się 4*a/(3*) od podstawy czyli w naszym przypadku współrzędna wynosi (a + 4*a/(3*)) , ponieważ samo pólkole jest w odległości a od osi ”x”.

I teraz wprowadzamy poszczególne wartości do wzoru na współrzędną ”yc” środka ciężkości:

 

1/2**a2 * (a + 4*a/(3*) + 1/2*2*a*a * 2/3*a

yc = ———————————————————————————–

1/2**a2 + 1/2*2*a*a

 

To teraz po kolei co wpisalismy do licznika:

– 1/2**a2 to pole półkola o promieniu a.

– (a + 4*a/(3* to wspólrzedna ”y” środka ciężkości półkola czyli odległość od osi ”x”

– 1/2*2*a*a  to pole trójkąta

– 2/3*a  to współrzędna ”y” środka ciężkości trójkąta

W mianowniku mamy sumaryczne pole figury.

Po uproszczeniu mamy coś takiego:

 

1/2**a + 4/3*a

yc = ——————————— = 1,1*a

1/2* + 1

srodkiciezkosci4

I jest to współrzędna ”y” środka ciężkości figury.

Ponieważ figura ma oś symetrii pokrywającą się z osią ”y” , to współrzędna ”x” środka ciężkości wynosi

xc = 0

Wytrzymałość – ścinanie – zadanie 15

To teraz może jakieś zadanie ze ścinania na przykładzie połączenia nitowego.scinanie1

Tak jak widać na powyższym obrazku, 2 blachy połączono przy pomocy 3 nitów. Do blach przyłożono 2 siły próbując to wszystko rozerwać.

Autor pyta się JAKIE BĘDZIE NAPRĘŻENIE ŚCINAJĄCE W NITACH podając jednocześnie wartość siły F oraz średnice nitów d.

scinanie2

Jeżeli siła F będzie zbyt duża, to może dojść do zniszczenia połączenia – nity zostana ścięte

scinanie3

To co widać powyżej to po ścięciu nitów lewa blacha poleciała w lewo, a prawa blacha poleciała w prawo.

Istotna jest powierzchnia ścinana – w tym przypadku to są 3 powierzchnie ścinane oznaczone trzema niebieskimi kółkami. Przekrój ściętych nitów jest równy trzem powierzchniom kół o średnicy nitu:

At = 3 * 1/4 * * d2

Naprężenie rozciągające wyraża się ilorazem siły ścinającej przez powierzchnie ścinane:

= F : At

Wytrzymałość – uogólnione prawo Hooke’a – zadanie 14

Wcześniej omawialiśmy podstawy uogólnionego prawa Hooke’a, a teraz jakieś zadaniew tym temacie:

Między 2 nieodkształcalne ściany wciśnięto sześcian o boku a. Sześcian jest materiału który może się odkształcić. Różnica między szczeliną między ścianami o długością boku sześcianu wynosi d. Dany jest modul Younga i stała Poissona dla materiału sześcianu.

Pytają się o nacisk jednostkowy sześcianu na obie ściany , po tym jak go wcisnęli między te ściany.

rozciaganie5

Sprawa jest prosta, ponieważ trzeba sześcian ścisnąć o d zeby go wsunąć
miedzy 2 ściany.
Warto sobie obrać układ współrzędnych i niech osie ”x” i ”y” będą leciały równolegle do ściany (jedna w pionie druga w poziomie), a oś ”z” będzie do ścian prostopadła.
Na początek piszemy 3 równania opisujące trójkierunkowy stan naprężenia
εx = σx/E – ν*σy/E – ν*σz/E [1]
εy = σy/E – ν*σx/E – ν*σz/E [2]
εz = σz/E – ν*σx/E – ν*σy/E [3]
i tak jak wcześniej mówiliśmy te 3 równania ZAWSZE wystąpią w tego typu zadaniach.

I teraz jak spojrzymy na nie dokładniej to widać że mamy 6 niewiadomych:
– odkształcenia względne wzdłuż 3 osi – εx,  εy , εz
– naprężenia wzdłuż 3 osi – σx , σy , σz
I teraz to zaczyna być logiczne, że potrzebujemy 6 równań żeby policzyć 6 niewiadomych. A ponieważ już mamy 3 (te powyżej) , to musimy wymyśleć 3 dodatkowe.
Wiadomo że wzdłuż osi równoległych do ściany naprężenie wynosi ZERO, ponieważ na 4 powierzchnie nie stykające się ze ścianami  nic nie naciska.
σx = σy = 0 [4] i [5]
Wiadomo że w kierunku ”z” sześcian został ściśnięty o d na dlugosci jego boku czyli a. To teraz obliczymy odksztalcenie wzgledne w kierunku ”z”:
εz = d/a [6]
Mamy teraz 6 równań i 6 niewiadomych i wstawimy równania [4] , [5] i [6] do równań [1] , [2] oraz [3]. I dalej pójdzie z górki:
εx = 0/E – ν*0/E – ν*σz/E [1]
εy = 0/E – ν*0/E – ν*σz/E [2]
d/a = σz/E – ν*0/E – ν*0/E [3]
Po uproszczeniu to wygląda trochę lepiej:
εx =  – ν*σz/E [1]
εy = – ν*σz/E [2]
d/a = σz/E [3]

Z równania [3] obliczymy naprężenie w kierunku ”z” czyli nacisk jednostkowy na ściany:
σz = E * d/a

i o to pytał się autor zadania.
Dodatkowo z równań [1] i [2] obliczymy odkształcenia względne w kierunkach równoległych do ściany:
εy = εx = -ν*σz/E = -ν * ( E * d/a ) / E =  -ν * ( d/a )

Prawda że proste?

Kinematyka – podstawy – ruch obrotowy – przyspieszenie kątowe

Dzisiaj będzie krótko i treściwie, ale sprawa jest istotna:

Przy okazji omawiania podstaw kinematyki pisaliśmy o przyspieszeniu liniowym  które oznacza zmianę prędkości w czasie i dotyczy ruchu postępowego.

A jak to wygląda w przypadku ruchu obrotowego?

 

Po pierwsze

Położeniu w ruchu obrotowym odpowiada KĄT (wyrażony w radianach [rad]).

 

Po drugie

Prędkości w ruchu obrotowym odpowiada PRĘDKOŚĆ KĄTOWA (wyrażona w radianach na sekundę [rad/s]) i oznacza zmianę położenia kątowego w czasie:

=  / t

gdzie:

Δ∝ – zmiana położenia kątowego czegoś tam na przykład wskazówki zegara

Δt – czas w którym ta zmiana położenia nastąpiła

 

Przyspieszeniu w ruchu obrotowym odpowiada PRZYSPIESZENIE KĄTOWE (wyrażone w radianach na sekundę do kwadratu [rad/s2]. Oznacza ono zmianę prędkości kątowej w czasie:

=  / t

gdzie:

Δω – zmiana prędkości kątowej czegoś co się obraca – na przykład wskazówki zegara

Δt – czas w którym ta zmiana prędkości kątowej nastąpiła

Wytrzymałość – zadanie 13 – skręcanie wału

Dzisiaj będzie o skręcaniu wału i poniżej mamy taki przykładowy wałshaft for torsing

Jak widać posiada on zmienną średnicę a poza tym na początkowym odcinku jest drążony. Teraz jak może wyglądać zadanie ze skręcania:skrecanie1

Wał został umieszczony pomiędzy dwiema ścianami – do lewej ściany jest on sztywno przymocowany i do prawej ściany również jest sztywno przymocowany. To przymocowanie często nazywają UTWIERDZENIEM albo WMUROWANIEM. Widać jego długości i średnice i widać również, że można go podzielić na 3 przedziały:

– lewy przedział DRĄŻONY o średnicy zewnętrznej 2*D

– drugi środkowy przekrój PEŁNY o średnicy zewnętrznej 2*D

– trzeci prawy przedział o średnicy D

Widać że na granicy pierwszego i drugiego przedziału przyłożono moment skręcający. Autor zadania chce żebyśmy narysowali wykresy momentów i naprężeń skręcających.

I teraz jak sie zabrać do takiego zadania:

 

1. Uwalniamy wał od więzów czyli ZASTĘPUJEMY ŚCIANY MOMENTAMI UTWIERDZENIA MA oraz MB. 

skrecanie2

Jak już wiadomo uwalnianie od więzów to tradycja przy wielu zadaniach z wytrzymałości.

 

2. Piszemy jakie będą momenty skręcające w poszczególnych przedziałach. I jedziemy po kolei:

Zasłaniamy większą część wału tak, żeby widzieć tylko kawałek pierwszego lewego przedziału.

skrecanie3

Widzimy tylko moment utwierdzenia w lewej ścianie:

Ms1 = MA

To samo z drugim przedziałem – odsłaniamy cały lewy przedział i kawałek drugiego – widzimy moment utwierdzenia w lewej ścianie i przyłozony momentskrecanie4

Ms2 = MA + M

To samo widać w przypadku trzeciego przedziału:skrecanie5

Ms3 = MA + M

 

3. Piszemy równanie równowagi – sumę momentów względem osi wału:

Mix = MA + M + MD = 0

Jak widać mamy równanie z dwiema niewiadomymi (momenty utwierdzenia MA i MD) a więc jest to zadanie STATYCZNIE NIEWYZNACZALNE – potrzebujemy jeszcze jedno równanie oprócz równania równowagi. Wobec tego przechodzimy do punktu czwartego:

 

4. Piszemy równanie geometryczne:

1 + 2 + 3 = 0

To znaczy dokładnie tyle, że jeżeli pierwszy przedział zostanie skręcony o 1 stopień i drugi przedział zostanie skręcony również o 1 stopień, to trzeci przedział musi się skręcić o MINUS 2 stopnie ponieważ lewa ściana i prawa ściana zawsze będą stały nieruchomo.

 

5. Liczymy biegunowe momenty bezwładności przekrojów w kolejnych przedziałach – to jest taka wielkość przekroju wałka która dotyczy skręcania i w której jest zawarta jego średnica:

Jo1 = * (2*D): 32 –  * D4 : 32 = /32 * (16*D4 – D4 ) =

/32 * 15*D4 = 15/32 * * D4

 

Jo2 = * (2*D)4 : 32 = 16/32 * * D4 = 0,5 * * D4

Jo3 = * D4 : 32

 

6. Do równania geometrycznego trzeba wmontować prawo Hooke dla skręcania. Dla kolejnych przedziałów zgodnie z prawem Hooke’a kąty skręcenia wyniosą:

 

Ms1 * L      MA * L * 32

1 = ————- = ———————–

G * Jo1    G * 15 * * D4

 

Ms2 * L     (MA+M) * L * 2

2 = ————- = ———————–

G * Jo2      G * * D4

 

Ms3 * L    (MA+M) * L * 32

3 = ————- = ————————

G * Jo3     G * * D4

 

Wszystkie 3 powyższe równania wstawiamy do równania geometrycznego:

 

MA * L * 32     (MA+M) * L * 2      (MA+M) * L * 32

—————– + ———————— + ————————- =0

G*15**D4       G * * D4          G * * D4

 

Teraz to wszystko można uprościć dzieląc obie strony przez L oraz mnożąc przez G * * D4

MA * 32/15 + (MA+M) * 2 + (MA+M) * 32 = 0

I jak opuścimy nawiasy:

MA*32/15 + MA*2 + M*2 + MA*32 + M*32 = 0

to pozostanie uprościć i tak już proste równanie:

MA*36,1 + M*34 = 0

MA*36,1 = (-M)*34

Wobec tego moment utwierdzenia w lewej ścianie:

MA = (-0,94)*M

 

7. Wstawiamy obliczony moment utwierdzenia do momentów skręcających w poszczególnych przedziałach:

Ms1 = MA = (-0,94)*M

Ms2 = MA + M = (-0,94)*M + M = 0,06*M

Ms3 = MA + M = 0,06*M

I teraz można już narysować wykres momentów:

skrecanie6

8. Obliczamy wskaźniki wytrzymałości przekrojów na skręcanie – dzielimy obliczony wcześniej biegunowy moment bezwładności przez maksymalny promień przekroju (jeżeli pierwszy przedział ma średnicę 2*D to maksymalny promień będzie D):

Wo1 = Jo1 : rmax = 0,47 * * D4 : D = 0,47 * * D3

Wo2 = Jo2 : rmax = 0,5 * * D4 : D = 0,5 * * D3

Wo3 = Jo3 : rmax = 0,031 * * D4 : (0,5*D) = 0,062 * * D3

 

9. Obliczamy naprężenia skręcające, które są iloczynem momentu przez wskaźnik:

s1 = Ms1 : Wo1 = (-0,94*M) : (0,47 * * D3 ) = (-0,64) * M/D3

s2 = Ms2 : Wo2 = 0,06*M : (0,5 * * D3 ) = 0,038 * M/D3

s3 = Ms3 : Wo3 = 0,06*M : (0,062 * * D3 ) = 0,31 * M/D3

skrecanie7

I po narysowaniu wykresów widać jak prosty jest to temat

Wytrzymałość – prawo Hooke’a dla skręcania – podstawy

O prawie Hooke dla rozciągania to już było na samym początku zabawy z wytrzymałością materiałów:

 

                        siła * długość pręta

wydłużenie = ———————————————
moduł Younga * pole przekroj

 

a teraz warto się zająć odmianą tego prawa, którą stosuje się dla skręcania:

 

                                moment skręcający * długość pręta
kąt skręcenia      = —————————————————–
G * Jo

 

gdzie:
G – moduł sprężystości postaciowej
Jo – biegunowy moment bezwładności

 

Jak spojrzymy na obie odmiany prawa Hooke’a, to teraz widać analogię pomiędzy nimi:
– kąt skręcenia odpowiada wydłużeniu,
–  moment odpowiada sile,
– moduł sprężystości postaciowej odpowiada modułowi Younga,
– biegunowy moment bezwładności odpowiada przekrojowi.

Moduł sprężystości postaciowej to jest taka właściwość MATERIAŁU, która odpowiada za jego sprężystość podczas skręcania na przykład wałka. Biegunowy moment bezwładności dotyczy przekroju poprzecznego wałka, jego kształtu oraz wymiarów.

Następnym razem zastosujemy to prawo w zadaniu ze skręcania.

Wytrzymałość – zginanie – zadanie 12 – linia ugięcia belki

Ponownie wracamy do belek, wcześniej obliczaliśmy reakcje w podporach i rysowaliśmy wykresy sił wewnętrznych.

zginanie1

Rozwinięciem poprzednich tematów jest obliczenie linii ugięcia. I co to tak naprawdę jest, bo teoria sobie ale dobrze jest wyobrazić sobie wszystko w praktyce?

Jak spojrzymy na belkę na powyższym obrazku (tą belkę już znamy z wcześniejszych zadań) to widać że jest ona obciążana różnymi siłami. Jak sobie wyobrazimy, że belka jest z materiału, który łatwo wygiąć to te obciążenia spowodują, że belka pod wpływem obciążeń nie będzie prosta tylko lekko się pokrzywi.

To jest tak, jakby ktoś złapał za 2 końce linijki i na środku położył ciężarek – linijka się wygnie.

I to równanie LINII UGIĘCIA to jest taka funkcja matematyczna, której wykres ma dokładnie taki kształt jak wygięta belka. To teraz jak to po kolei zrobić:
1. Dzielimy belke na przedziały i w każdym z nich piszemy moment gnący – to już było przy okazji rysowania wykresów, ale działamy:
Pierwszy przedział
Mg(x) = q * a² – q * x * x/2 = q * a2 – 0,5 * q * x²

Drugi przedział
Mg(x) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a) =
=  q * a² – q * a * x + 0,5 * q * a² + 4 * q * a * x – 4 * q * a² =
=  q * a² – q * a * x + 0,5 * q * a² + 4 * q * a * x – 4 * q * a² =
=  3 * q * a * x – 2,5 * q * a²
2. Dla każdego przedziału piszemy równanie różniczkowe linii ugięcia:
Pierwszy przedział:
E * J * d²y/dx2 = -Mg(x)
E * J * d²y/dx2 = 0,5 * q * x² – q * a²
Dwukrotnie całkujemy równanie stronami:
E * J * dy/dx = 0,5 * q * 1/3 * x³ – q * a² * x + c1
E * J * dy/dx = q * 1/6 * x³ – q * a² * x + c1
E * J * y = q * 1/6 * 1/4 * x³ * x – q * a² * 0,5 * x² + c1 * x + d1
E * J * y = q * 1/24 * x³ * x – 0,5 * q * a² * x² + c1 * x + d1 – równanie linii ugięcia dla pierwszego przedziału

I to samo drugi przedział:
E * J * d2y/dx2 = -Mg(x)
E * J * d2y/dx2 = 2,5 * q * a²- 3 * q * a * x
E * J * dy/dx = 2,5 * q * a² * x – 3 * q * a * 0,5 * x² + c2
E * J * dy/dx = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
E * J * y = 2,5 * q * a² * 0,5 * x² – 1,5 * q * a * 1/3 * x3 + c2 * x + d2
E * J * y = 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2 – równanie linii ugięcia dla drugiego przedziału

Jak już mamy równania linii ugięcia dla obu przedziałów, to jedyne co nie wiadomo, to stałe całkowania c1, d1, c2 oraz d2.

W tym celu:
3. Piszemy warunki brzegowe.
I należy zapytać co to są warunki brzegowe, ponieważ sama ta nazwa niewiele mówi:

zginanie10

Można sobie wyobrazić, w jaki sposób belka może zostać wygięta i przykład widać na rysunku powyżej czerwona linią przerywaną:
Na pewno na prawym końcu w punkcie C belka wychodzi ze ściany i wychodzi z tej ściany poziomo, a zacznie się wyginać dopiero kawałek od ściany.
Warunkiem brzegowym jest na przykład to, że wygięta belka zawsze wychodzi ze ściany poziomo niezależnie od tego, jak zostanie pogięta przez przyłozone obciążenia. I jak to zapisać:
y=0 dla x=2*a (pierwszy warunek brzegowy) – dosłownie znaczy tyle że na prawym końcu belka się nie ugnie, bo jest wmurowana do ściany
oraz
y’=0 dla x=2*a ( drugi warunek brzegowy) – i to też można opisać dosłownie – belka wychodzi ze ściany poziomo – styczna do belki w punkcie C jest pozioma – to znaczy tyle, że pochodna funkcji opisującej linię ugięcia belki w punkcie C bedzie równa zero.
Mamy 2 warunki brz³egowe, czyli będą potrzebne jeszcze dwa i one będą dotyczyć punktu B na styku przedziału lewego i prawego.

W punkcie B koniec pierwszego przedziału styka się z początkiem drugiego przedziału, a więc ugięcie na KOŃCU pierwszego przedziału będzie takie samo jak na POCZĄTKU drugiego przedziału i zapiszemy to następująco:
y1=y2 dla x=a (trzeci warunek brzegowy)
Po drugie styczna do belki na końcu pierwszego przedziału będzie taka sama jak styczna do belki na początku drugiego przedziału:
y1’=y2′ dla x=a (czwarty warunek brzegowy).

4. Warunki brzegowe wstawiamy do scałkowanych równań różniczkowych:
Na początek bierzemy drugi warunek brzegowy
y’=0 dla x=2*a
i wstawiamy do równania różniczkowego pierwszego stopnia z drugiego przedziału (dlatego że drugi warunek dotyczy pochodnej y’ oraz dotyczy drugiego przedziału):
E * J * dy/dx = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
E * J * 0 = 2,5 * q * a² * 2*a – 1,5 * q * a * (2*a)² + c2
0 = 5 * q * a³  – 6 * q * a³ + c2
0 =   (- q) * a³ + c2
Pierwsza stała całkowania dla drugiego przedziału
c2 = q * a³

Teraz bierzemy pierwszy warunek brzegowy
y=0 dla x=2*a
i wstawiamy do równania zerowego stopnia dla drugiego przedziału
E * J * y = 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2
Wstawiamy również obliczoną przed chwilą stałą całkowania
E * J * 0 = 1,25 * q * a² * (2*a)² – 0,5 * q * a * (2*a)³ + q * a³ * 2 * a + d2
0 = 5 * q * a³ * a – 4 * q * a³ * a  + q * a³ * a  * 2 + d2
0 = 3 * q * a³ * a  + d2
Druga stała całkowania dla drugiego przedziału
d2 = (-3) * q * a³ * a

Kolejno bierzemy czwarty warunek brzegowy:
y1’=y2′ dla x=a
i przyrównujemy równania pierwszego stopnia dla obu przedziałów
q * 1/6 * x³ – q * a² * x + c1 = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
wstawiając również obliczoną stałą całkowania c2:
q * 1/6 * a³ – q * a² * a + c1 = 2,5 * q * a² * a – 1,5 * q * a * a² + q * a³
(-5/6) * q * a³ + c1 = 2 * q * a³
Pierwsza stała całkowania dla drugiego przedziału
c1 = 2,8 * q * a³

I na koniec bierzemy trzeci warunek brzegowy:
y1=y2 dla x=a
i przyrównujemy równania zerowego stopnia dla obu przedziałów
q * 1/24 * x * x³ – 0,5 * q * a² * x²+ c1 * x + d1 =
= 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2

q * 1/24 * a* a³ – 0,5 * q * a* a³ + 2,8 * q * a* a³ + d1 =
= 1,25 * q * a* a³ – 0,5 * q * a* a³ + q * a* a³ + (-3) * q * a* a³

Pierwsza stała całkowania dla drugiego przedziału
d1 = (-1,25) * q * a* a³ – 2,3 * q * a* a³ = (-3,55) * q * a* a³

Obliczone stałe całkowania wstawiamy do równań linii ugięcia:
y1 = (q * 1/24 * x * x³ – 0,5 * q * a² * x² + c1 * x + d1 ) : EJ
y2 = (1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2) : EJ

y1 = (q * 1/24 * x * x³ – 0,5 * q * a² * x² + 2,8 * q * a³ * x – 3,55 * q * a * a³ ) : EJ
y2 = (1,25 * q * a² * x²- 0,5 * q * a * x³ + q * a³ *x – 3 * q * a * a³ ) : EJ