Momenty zginające belkę i siły tnące – wytrzymałość – zadanie 11

Witam ponownie i ponownie będziemy działać z belką z poprzedniego wpisu i  ponownie obliczymy momenty zginające belkę.

Wytrzymałość-zginanie-zadanie 10

Tylko że tym razem użyjemy innej, trudniejszej i GORSZEJ metody.zginanie1 - Momenty zginające belkę i siły tnące - wytrzymałość - zadanie 11

Wymiary belki i obciążenia są te same i to samo jest pytanie:

NARYSOWAĆ WYKRESY MOMENTU ZGINAJĄCEGO BELKĘ I SIŁY TNĄCEJ

Tak samo mamy 2 przedziały i w pierwszym przedziale x zawiera się w przedziale od 0 do a. A jak się zawiera od 0 do a, to może przyjąć każdą wartość z tego przedziału.

  1. Zaczynamy od momentów zginających belkę w punktach A, B i C , ponieważ są to początki i końce przedziałów

A więc zasłaniamy kartką (TEN CZERWONY PROSTOKĄT-KOPERTA) i  odsłaniamy tylko tyle belki z lewej strony, żeby widzieć całą tą wartość dla pierwszego przedziałuzginanie8 - Momenty zginające belkę i siły tnące - wytrzymałość - zadanie 11

Czyli widzimy od lewej strony tylko belkę o długości x. Liczymy moment, jaki działa na kartkę:
Mg(x) = q * a² – q * x * x/2
Pierwsza pozycja jest bardzo przejrzysta bo jest to moment przyłożony na lewym końcu, a druga pozycja to siła razy ramię – siła to q*x (obciążenie ciągłe razy długość na której ono działa) a ramię to odległość od KARTKI do POŁOWY widocznej części obciążenia ciągłego.

zginanie9 - Momenty zginające belkę i siły tnące - wytrzymałość - zadanie 11

Analogicznie przechodzimy do drugiego przedziału. Tutaj zmienna x może wynosić od a do 2*a:
Mg(x) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a)
Druga pozycja to siła q*a (obciążenie ciągłe razy długość na której ono działa – teraz widzimy całe obciążenie ciągłe q) razy ramię czyli odległość od KARTKI do POŁOWY widocznego obciążenia ciągłego.

I w ten sposób policzyliśmy momenty gnące w zależności od x i jak teraz się podstawi odpowiednie wartości takie jak 0, a oraz 2*a to wyjdzie to samo co przy pierwszej metodzie, ale w trochę bardziej zagmatwany sposób, na przykład dla pierwszego przedziału dla x=0 czyli dla punktu A:
Mg(x=0) = q * a² – q * x * x/2 = q * a2 – q * 0 * 0/2 = q * a²
teraz gołym okiem widać że wychodzi to samo co przy pierwszej metodzie:
MgA = q * a²

Dla punktu B:
Mg(x=a) = q * a² – q * a * a/2 = q * a2 – 0,5*q * a2 = 0,5*q * a²

Dla punktu C:
Mg(x=2*a) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a) =
= q * a² – q * a * (2*a-a/2) + 4*q*a * (2*a-a) =
= q * a² – q * a * 1,5*a + 4*q*a * a = 3,5*q * a²zginanie5 - Momenty zginające belkę i siły tnące - wytrzymałość - zadanie 11

2. Podobnie drugi GORSZY sposób wygląda dla sił tnących.

Dla pierwszego przedziału podobnie zakrywamy kartką i odsłaniamy tyle żeby widzieć lewy koniec belki o długości x. I jakie siły (poprzeczne do belki czyli pionowe) widzimy:

zginanie8 - Momenty zginające belkę i siły tnące - wytrzymałość - zadanie 11
T(x) = (-q) * x

Tylko obciążenie q o długości x.

Dla drugiego przedziału:

zginanie9 - Momenty zginające belkę i siły tnące - wytrzymałość - zadanie 11
T(x) = (-q) * a + 4*q*a = 3*q*a

Podstawiając wartości x dla charakterystycznych punktów. Dla punktu A:
T(x=0) = (-q) * x = (-q) * 0 = 0

Dla punktu B z lewej strony:
T(x=a) = (-q) * a

Dla punktu B z prawej strony:
T(x=a) = 3*q*a

Dla punktu C:
T(x=2*a) = 3*q*a

zginanie7 - Momenty zginające belkę i siły tnące - wytrzymałość - zadanie 11
Jak widać, w pierwszej metodzie wyszło dokładnie to samo.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *