Twierdzenie Steinera i moment bezwładności przekroju

Witam wszystkich i dzisiaj przy okazji momentów bezwładności przekrojów będzie o twierdzeniu Steinera . Już mówię, co to oznacza:

Wielokrotnie w mechanice i wytrzymałości spotykamy się z przekrojami na przykład z przekrojami zginanych belek czy skręcanych wałów. Taki przekrój może być prostokątem, kołem trójkątem lub dowolną kombinacją wymienionych figur. Każdy przekrój posiada środek ciężkości (o czym już było niedawno) oraz moment bezwładności.
To może wystarczy tego wstępu, bo o momencie bezwładności przekroju dzisiaj będzie. Przypomnę, że jest to taka wielkość opisująca figurę, która mówi, w jaki sposób jest ona położona względem osi układu współrzędnych. Jeżeli ta oś przechodzi przez środek ciężkości przekroju to nazywa się

OSIĄ CENTRALNĄ.

Momenty bezwładności podstawowych figur względem osi centralnych można znaleźć w literaturze i kilka przykładów zamieszczam poniżej
momentbezwladnisci1 1 - Twierdzenie Steinera i moment bezwładności przekroju
Wszystko pięknie tylko często potrzeba obliczyć moment bezwładności przekroju względem osi x równoległej do CENTRALNEJ xc ale NIE PRZECHODZĄCEJ przez środek ciężkości przekroju. I na to gotowych wzorów nie ma, ale z pomocą przychodzi twierdzenie Steinera.
momentbezwladnosci2 1 - Twierdzenie Steinera i moment bezwładności przekroju
Nawiązując do powyższego rysunku mamy dane:
– moment bezwładności przekroju względem osi centralnej Jxc (na przykład może to być trójkąt, koło lub inna figura)
– pole figury S
– odległość miedzy osią centralna xc a równoległą do niej osią x którą oznaczono a .
I teraz uwaga:
Moment bezwładności względem osi x wyniesie:

J = Jxc + S * a²

Prawda że łatwe?

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *