Zaprojektuj przekrój belki – zginanie – zadanie 39

Dzisiaj zrobimy zadanie ze zginania belek polegające na zaprojektowaniu przekroju belki. zginanie32 1024x462 - Zaprojektuj przekrój belki - zginanie - zadanie 39
I oto widzimy belkę składającą się z dwóch odcinków (przedziałów) połączonych przegubem. Lewy koniec lewego odcinka oparto na podporze przegubowej przesuwnej, a prawy koniec prawego odcinka wmurowano w ścianie. Belkę obciążono siłą i momentem. Przekrój belki jest prostokątem o podstawie a i wysokości 2*a, gdzie a jest niewiadomą.

zginanie41 - Zaprojektuj przekrój belki - zginanie - zadanie 39

Belkę wykonano z materiału o dopuszczalnych naprężeniach zginających kg. Autor zadaje pytanie:

ZAPROJEKTUJ PRZEKRÓJ BELKI O PRZEKROJU PROSTOKĄTNYM 2a x a

Początek jest analogiczny do innych zadań ze zginania belek:

Krok pierwszy

Uwalniamy belkę od więzów, ale jest małe ALE.
To ALE jest, ponieważ mamy jedną reakcję w lewej podporze (podpora przegubowa przesuwna – jedna reakcja prostopadła do podłoża) i trzy reakcje w ścianie. Tylko żeby obliczyć momenty zginające belkę, to nie potrzebujemy reakcji na jednym końcu belki i dlatego obliczymy TYLKO reakcję w podporze przesuwnej. W tym celu uwolnimy od więzów LEWĄ część belkizginanie33 1024x619 - Zaprojektuj przekrój belki - zginanie - zadanie 39Krok drugi

Piszemy równanie równowagi statycznej dla LEWEJ części belki, ALE będzie to wyłącznie równanie momentów względem punktu B, ponieważ w tym równaniu wystąpi TYLKO jedna niewiadoma RA, której szukamy:
ΣMiB = RA*L – P*L = 0
RA*L = P*L
Reakcja w podporze A wyniesie:
RA = P

Krok trzeci
Powracamy do belki jako całość i uwalniamy od więzów:zginanie34 1024x467 - Zaprojektuj przekrój belki - zginanie - zadanie 39

Krok czwarty
Ponieważ mamy obliczoną reakcję w podporze A, to zaczynamy obliczanie momentów od lewej strony. Zakrywamy kawałkiem KARTKI (ten czerwony prostokąt przekreślony na krzyż) całą belkę odsłaniając WYŁĄCZNIE punkt A i piszemy jaki moment widzimy:

zginanie35 1024x467 - Zaprojektuj przekrój belki - zginanie - zadanie 39
MgA = P*L
i to jest jasne i proste, ponieważ widać tylko moment skupiony P*L, a siła RA działa na ramieniu o długości ZERO (odległość od siły RA do kartki).

Następnie zakrywamy prawą połowę belki, żeby jednocześnie widzieć punkt B i piszemy moment w punkcie B:

zginanie36 1024x467 - Zaprojektuj przekrój belki - zginanie - zadanie 39
MgB = P*L – RA*L = P*L – P*L = 0
Przypomnę, że w powyższym wzorze RA*L oznacza moment od siły RA działający na ramieniu L (odległość od siły RA do kartki).

Pozostało obliczyć moment zginający w punkcie C i w tym celu zasłaniamy tylko ścianę z prawej strony i punkt C:

zginanie37 1024x467 - Zaprojektuj przekrój belki - zginanie - zadanie 39
MgC = P*L – RA*2*L + 4*P*L = P*L – P*2*L + 4*P*L = 3*P*L

Krok piąty
Tak samo idąc od lewej do prawej obliczymy siły tnące działające na belkę. Dla przypomnienia siła tnąca to jest taka siła, która działa w poprzek belki, czyli w naszym przypadku siła działająca w pionie (ponieważ w tym zadaniu belka leci poziomo). A więc do dzieła:
Zasłaniamy belkę kartką w taki sposób żeby widzieć kawałek lewego przedziału.

zginanie38 1024x467 - Zaprojektuj przekrój belki - zginanie - zadanie 39

Piszemy siły w poprzek belki, które widzimy:
TAB = (-RA) = (-P)

Kolejno zasłaniamy belkę, żeby widzieć cały lewy przedział i kawałek prawego.
zginanie39 1024x467 - Zaprojektuj przekrój belki - zginanie - zadanie 39
Oto jakie siły widzimy, które działają w poprzek belki:
TBC = (-RA) + 4*P = (-P) + 4*P = 3*P
Obliczyliśmy siły tnące i momenty gnące, to można narysować wykresy.

zginanie40 - Zaprojektuj przekrój belki - zginanie - zadanie 39Widać, że największy moment zginający występuje przy ścianie:
Mgmax = 3*P*L

Krok szósty
Teraz przejdziemy do prostokątnego przekroju belki i dla niego obliczymy moment bezwładności:
Jxc = a * (2*a)³ / 12 = 0,67 * a4
oraz wskaźnik wytrzymałości na zginanie:
Wx = Jxc : ymax = 0,67 * a4 : a = 0,67 * a³

Krok siódmy
Przyszedł czas na warunek wytrzymałościowy, który mówi, że maksymalne naprężenia zginające belkę muszą być mniejsze od dopuszczalnych kg:

https://blog-student.com/naprezenia-zginajace-podstawy/
Mgmax : Wx < kg
Wstawiamy do powyższego wzoru wskaźnik i wartość maksymalnego momentu gnącego:
3*P*L : ( 0,67 * a³ ) < kg
4,48*P*L / a³ < kg
Szukany minimalny wymiar przekroju wyniesie:
a = [ 4,48*P*L / kg ] 1/3

i w ten sposób zaprojektowaliśmy wymiary przekroju belki.

Obliczanie momentów zginających belkę – zadanie 24

Dzisiaj zrobimy kolejne zadanie z belek, w którym obliczymy momenty zginające.

Mamy belkę opartą na 2 podporach (przegubowa stała i przegubowa przesuwna) i widać tutaj 2 przedziały.

 

zginanie21 - Obliczanie momentów zginających belkę - zadanie 24

Po pierwsze – uwalniamy belkę od więzów

czyli zastępujemy siłami to wszystko, czym łączy się belka ze światem zewnętrznym. W tym przypadku są to 2 podpory przegubowe:
– przesuwna – zamiast niej rysujemy reakcję prostopadłą do 2 równoległych kresek
– stała – zamiast niej rysujemy 2 prostopadłe do siebie reakcje

 

Po drugie

 

zginanie22 - Obliczanie momentów zginających belkę - zadanie 24

Jak już uwolniliśmy belkę od więzów, to teraz liczymy reakcje. Dobrze będzie obliczyć reakcję tylko w jednej podporze, bo jak będziemy po kolei obliczać momenty gnące, to nie dojdziemy do tej drugiej podpory.

Wytrzymałość-zginanie-zadanie 10

Może to być reakcja w podporze A i w tym celu obliczamy sumę momentów względem punktu C:
∑MiC = RA*2*a – M – M – M = 0
RA*2*a = M + M + M
RA*2*a = 3 * M
Z tego wynika reakcja w podporze A:
RA = 3 * M : (2*a) = 1,5 * M/a

Po trzecie – mając reakcję RA i pozostałe obciążenia zewnętrzne obliczamy momenty gnące w 3 charakterystycznych punktach na początku i końcu przedziałów: A, B i C.
Aby obliczyć moment w punkcie A zasłaniamy KARTKĄ prawie całą belkę tak żeby było widać tylko punkt A i sam początek belki.zginanie23 - Obliczanie momentów zginających belkę - zadanie 24

I co widać – moment skupiony w punkcie A:
MgA = M

Tak samo postępujemy z punktem B, ale ponieważ w punkcie B jest przyłożony moment, to obliczymy moment zginający belkę tuż na LEWO od punktu B

oraz drugi

tuż na PRAWO od punktu B.
W pierwszym przypadku odsłaniamy cały pierwszy przedział w taki sposób, żeby jeszcze mieć zasłonięty punkt B:

zginanie24 - Obliczanie momentów zginających belkę - zadanie 24

MgB< = M – RA*a = M – 1,5 * M/a*a = M – 1,5 * M = (-0,5*M)
czyli widzimy moment M oraz reakcję RA działającą na ramieniu a, przy czym a jest odległością od siły RA do KARTKI.

Moment M  UNOSI lewy koniec belki (dlatego jest PLUS) , reakcja RA OPUSZCZA lewy koniec belki (dlatego jest z MINUSEM).

zginanie25 - Obliczanie momentów zginających belkę - zadanie 24

Po prawej stronie punktu B (odsłaniamy cały lewy przedział oraz punkt B):
MgB> = M – RA*a + M = 2*M – 1,5 * M/a*a = 2*M – 1,5*M = 0,5*M

 

W punkcie C (odsłaniamy całą belkę mając zasłonięty tylko punkt C):

 

zginanie26 - Obliczanie momentów zginających belkę - zadanie 24
MgC = M – RA*2*a + M = M – 1,5 * M/a*2*a + M =
= 2 * M – 1,5 * M * 2 = (-M)
z momentem M sprawa wygląda analogicznie jak w punkcie B, reakcja RA działa tutaj na ramieniu 2*a. Momentu przyłożonego w punkcie C jeszcze nie widzimy, bo jest zasłonięty KARTKĄ.

 

Po czwarte – teraz kolej na siły tnące (czyli te siły które działają w PIONIE w poprzek belki)

i analogicznie idziemy od lewej strony:

Bierzemy kawałek KARTKI i zasłaniamy prawie całą belkę i tylko odsłaniamy kawałek lewego przedziału – widać tylko siłę RA działającą w dół.

zginanie27 - Obliczanie momentów zginających belkę - zadanie 24

TAB = (-RA) = (-1,5) * M/a
A dlatego sobie przyjęliśmy MINUS, bo siła działa w DÓŁ.

Przechodzimy do przedziału prawego czyli odsłaniamy cały lewy przedział i kawałek prawego przedziału.

 

zginanie28 - Obliczanie momentów zginających belkę - zadanie 24

Jedyna siła działająca pionowo czyli w poprzek belki to dalej jest tylko RA:
TBC = (-RA) = (-1,5) * M/a

To teraz jak obliczyliśmy momenty zginające belkę i siły tnące, to można narysować wykresy

zginanie20 - Obliczanie momentów zginających belkę - zadanie 24

Powyżej widać oba wykresy i teraz będzie najlepsze, co się potwierdza przy zginaniu belek.

Widać że wykres momentu gnącego (ten na górze) idąc od prawej do lewej cały czas opada, czyli jest to funkcja malejąca.

Pod wykresem momentu mamy wykres siły tnącej i na całej długości siła tnąca ma wartość ujemną.

I chodzi tutaj o tę zbieżność faktów:

moment gnący malejący – siła tnąca ujemna.

To samo naukowo można powiedzieć:

Siła tnąca

jest pochodną

momentu gnącego

Prawda że proste ?

Równanie różniczkowe linii ugięcia belki – zadanie 12

Ponownie wracamy do belek – wcześniej obliczaliśmy reakcje w podporach i rysowaliśmy wykresy sił wewnętrznych, a teraz wyznaczymy linię ugięcia belki przy pomocy równania różniczkowego.

zginanie1 - Równanie różniczkowe linii ugięcia belki - zadanie 12

I co to tak naprawdę jest, bo teoria sobie ale dobrze jest wyobrazić sobie wszystko w praktyce?

Jak spojrzymy na belkę na powyższym obrazku (tą belkę już znamy z wcześniejszych zadań) to widać że jest ona obciążana różnymi siłami. Spróbujmy sobie wyobrazić, że belka jest z materiału, który łatwo wygiąć . Te obciążenia spowodują, że belka pod wpływem obciążeń nie będzie prosta tylko lekko się pokrzywi.

Podobnie będzie, gdy ktoś złapie za 2 końce linijki i na środku położy ciężarek – linijka się wygnie.

I to równanie różniczkowe LINII UGIĘCIA to jest taka funkcja matematyczna, której wykres ma dokładnie taki kształt jak wygięta belka. To teraz jak to po kolei zrobić:
1. Dzielimy belkę na przedziały i w każdym z nich piszemy moment gnący

to już było przy okazji rysowania wykresów,

Wytrzymałość-zginanie-zadanie 11

ale działamy:
Pierwszy przedział
Mg(x) = q * a² – q * x * x/2 = q * a2 – 0,5 * q * x²

Drugi przedział
Mg(x) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a) =
=  q * a² – q * a * x + 0,5 * q * a² + 4 * q * a * x – 4 * q * a² =
=  3 * q * a * x – 2,5 * q * a²

2. Dla każdego przedziału piszemy równanie różniczkowe linii ugięcia belki:
Pierwszy przedział:
E * J * d²y/dx2 = -Mg(x)
E * J * d²y/dx2 = 0,5 * q * x² – q * a²
Dwukrotnie całkujemy równanie stronami:
E * J * dy/dx = 0,5 * q * 1/3 * x³ – q * a² * x + c1
E * J * dy/dx = q * 1/6 * x³ – q * a² * x + c1
E * J * y = q * 1/6 * 1/4 * x³ * x – q * a² * 0,5 * x² + c1 * x + d1
E * J * y = q * 1/24 * x³ * x – 0,5 * q * a² * x² + c1 * x + d1 – równanie linii ugięcia belki dla pierwszego przedziału

I to samo drugi przedział:
E * J * d2y/dx2 = -Mg(x)
E * J * d2y/dx2 = 2,5 * q * a²- 3 * q * a * x
E * J * dy/dx = 2,5 * q * a² * x – 3 * q * a * 0,5 * x² + c2
E * J * dy/dx = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
E * J * y = 2,5 * q * a² * 0,5 * x² – 1,5 * q * a * 1/3 * x3 + c2 * x + d2
E * J * y = 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2 – równanie linii ugięcia belki dla drugiego przedziału

Jak już mamy równania linii ugięcia dla obu przedziałów, to jedyne co nie wiadomo, to stałe całkowania c1, d1, c2 oraz d2.

W tym celu:
3. Piszemy warunki brzegowe.
I należy zapytać co to są warunki brzegowe, ponieważ sama ta nazwa niewiele mówi:

zginanie10 - Równanie różniczkowe linii ugięcia belki - zadanie 12

Można sobie wyobrazić, w jaki sposób belka może zostać wygięta i przykład widać na rysunku powyżej czerwona linią przerywaną:
Na pewno na prawym końcu w punkcie C belka wychodzi ze ściany i wychodzi z tej ściany poziomo, a zacznie się wyginać dopiero kawałek od ściany.
Warunkiem brzegowym jest na przykład to, że wygięta belka zawsze wychodzi ze ściany poziomo niezależnie od tego, jak zostanie pogięta przez przyłożone obciążenia. I jak to zapisać:
y=0 dla x=2*a (pierwszy warunek brzegowy) – dosłownie znaczy tyle że na prawym końcu belka się nie ugnie, bo jest wmurowana do ściany
oraz
y’=0 dla x=2*a ( drugi warunek brzegowy) – i to też można opisać dosłownie – belka wychodzi ze ściany poziomo – styczna do belki w punkcie C jest pozioma – to znaczy tyle, że pochodna funkcji opisującej linię ugięcia belki w punkcie C będzie równa zero.
Mamy 2 warunki brzegowe, czyli będą potrzebne jeszcze dwa i one będą dotyczyć punktu B na styku przedziału lewego i prawego.

W punkcie B koniec pierwszego przedziału styka się z początkiem drugiego przedziału, a więc ugięcie na KOŃCU pierwszego przedziału będzie takie samo jak na POCZĄTKU drugiego przedziału i zapiszemy to następująco:
y1=y2 dla x=a (trzeci warunek brzegowy)
Po drugie styczna do belki na końcu pierwszego przedziału będzie taka sama jak styczna do belki na początku drugiego przedziału:
y1’=y2′ dla x=a (czwarty warunek brzegowy).

4. Warunki brzegowe wstawiamy do scałkowanych równań różniczkowych:
Na początek bierzemy drugi warunek brzegowy
y’=0 dla x=2*a
i wstawiamy do równania różniczkowego pierwszego stopnia z drugiego przedziału (dlatego że drugi warunek dotyczy pochodnej y’ oraz dotyczy drugiego przedziału):
E * J * dy/dx = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
E * J * 0 = 2,5 * q * a² * 2*a – 1,5 * q * a * (2*a)² + c2
0 = 5 * q * a³  – 6 * q * a³ + c2
0 =   (- q) * a³ + c2
Pierwsza stała całkowania dla drugiego przedziału
c2 = q * a³

Teraz bierzemy pierwszy warunek brzegowy
y=0 dla x=2*a
i wstawiamy do równania zerowego stopnia dla drugiego przedziału
E * J * y = 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2
Wstawiamy również obliczoną przed chwilą stałą całkowania
E * J * 0 = 1,25 * q * a² * (2*a)² – 0,5 * q * a * (2*a)³ + q * a³ * 2 * a + d2
0 = 5 * q * a³ * a – 4 * q * a³ * a  + q * a³ * a  * 2 + d2
0 = 3 * q * a³ * a  + d2
Druga stała całkowania dla drugiego przedziału
d2 = (-3) * q * a³ * a

Kolejno bierzemy czwarty warunek brzegowy:
y1’=y2′ dla x=a
i przyrównujemy równania pierwszego stopnia dla obu przedziałów
q * 1/6 * x³ – q * a² * x + c1 = 2,5 * q * a² * x – 1,5 * q * a * x² + c2
wstawiając również obliczoną stałą całkowania c2:
q * 1/6 * a³ – q * a² * a + c1 = 2,5 * q * a² * a – 1,5 * q * a * a² + q * a³
(-5/6) * q * a³ + c1 = 2 * q * a³
Pierwsza stała całkowania dla drugiego przedziału
c1 = 2,8 * q * a³

I na koniec bierzemy trzeci warunek brzegowy:
y1=y2 dla x=a
i przyrównujemy równania zerowego stopnia dla obu przedziałów
q * 1/24 * x * x³ – 0,5 * q * a² * x²+ c1 * x + d1 =
= 1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2

q * 1/24 * a* a³ – 0,5 * q * a* a³ + 2,8 * q * a* a³ + d1 =
= 1,25 * q * a* a³ – 0,5 * q * a* a³ + q * a* a³ + (-3) * q * a* a³

Pierwsza stała całkowania dla drugiego przedziału
d1 = (-1,25) * q * a* a³ – 2,3 * q * a* a³ = (-3,55) * q * a* a³

Obliczone stałe całkowania wstawiamy do równań linii ugięcia belki:
y1 = (q * 1/24 * x * x³ – 0,5 * q * a² * x² + c1 * x + d1 ) : EJ
y2 = (1,25 * q * a² * x² – 0,5 * q * a * x³ + c2 * x + d2) : EJ

y1 = (q * 1/24 * x * x³ – 0,5 * q * a² * x² + 2,8 * q * a³ * x – 3,55 * q * a * a³ ) : EJ
y2 = (1,25 * q * a² * x²- 0,5 * q * a * x³ + q * a³ *x – 3 * q * a * a³ ) : EJ

Momenty gnące belkę i siły tnące w belce – zadanie 11

Witam ponownie i ponownie będziemy działać z belką z poprzedniego wpisu i  ponownie obliczymy momenty gnące i siły tnące.

Wytrzymałość-zginanie-zadanie 10

Tylko że tym razem użyjemy innej, trudniejszej i GORSZEJ metody.zginanie1 - Momenty gnące belkę i siły tnące w belce - zadanie 11

Wymiary belki i obciążenia są te same i to samo jest pytanie:

NARYSOWAĆ WYKRESY MOMENTU ZGINAJĄCEGO BELKĘ I SIŁY TNĄCEJ

Tak samo mamy 2 przedziały i w pierwszym przedziale x zawiera się w przedziale od 0 do a. A jak się zawiera od 0 do a, to może przyjąć każdą wartość z tego przedziału.

  1. Zaczynamy od momentów zginających belkę w punktach A, B i C , ponieważ są to początki i końce przedziałów

A więc zasłaniamy kartką (TEN CZERWONY PROSTOKĄT-KOPERTA) i  odsłaniamy tylko tyle belki z lewej strony, żeby widzieć całą tą wartość dla pierwszego przedziałuzginanie8 - Momenty gnące belkę i siły tnące w belce - zadanie 11

Czyli widzimy od lewej strony tylko belkę o długości x. Liczymy moment, jaki działa na kartkę:
Mg(x) = q * a² – q * x * x/2
Pierwsza pozycja jest bardzo przejrzysta bo jest to moment przyłożony na lewym końcu, a druga pozycja to siła razy ramię – siła to q*x (obciążenie ciągłe razy długość na której ono działa) a ramię to odległość od KARTKI do POŁOWY widocznej części obciążenia ciągłego.

zginanie9 - Momenty gnące belkę i siły tnące w belce - zadanie 11

Analogicznie przechodzimy do drugiego przedziału.

Tutaj zmienna x może wynosić od a do 2*a:
Mg(x) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a)
Druga pozycja to siła q*a (obciążenie ciągłe razy długość na której ono działa – teraz widzimy całe obciążenie ciągłe q) razy ramię czyli odległość od KARTKI do POŁOWY widocznego obciążenia ciągłego.

I w ten sposób policzyliśmy momenty gnące w zależności od x i jak teraz się podstawi odpowiednie wartości takie jak 0, a oraz 2*a to wyjdzie to samo co przy pierwszej metodzie, ale w trochę bardziej zagmatwany sposób, na przykład dla pierwszego przedziału dla x=0 czyli dla punktu A:
Mg(x=0) = q * a² – q * x * x/2 = q * a2 – q * 0 * 0/2 = q * a²
teraz gołym okiem widać że wychodzi to samo co przy pierwszej metodzie:
MgA = q * a²

Dla punktu B:
Mg(x=a) = q * a² – q * a * a/2 = q * a2 – 0,5*q * a2 = 0,5*q * a²

Dla punktu C:
Mg(x=2*a) = q * a² – q * a * (x-a/2) + 4*q*a * (x-a) =
= q * a² – q * a * (2*a-a/2) + 4*q*a * (2*a-a) =
= q * a² – q * a * 1,5*a + 4*q*a * a = 3,5*q * a²zginanie5 - Momenty gnące belkę i siły tnące w belce - zadanie 11

2. Podobnie drugi GORSZY sposób wygląda dla sił tnących.

Dla pierwszego przedziału podobnie zakrywamy kartką i odsłaniamy tyle żeby widzieć lewy koniec belki o długości x. I jakie siły (poprzeczne do belki czyli pionowe) widzimy:

zginanie8 - Momenty gnące belkę i siły tnące w belce - zadanie 11
T(x) = (-q) * x

Tylko obciążenie q o długości x.

Podobnie postępujemy dla drugiego przedziału:

zginanie9 - Momenty gnące belkę i siły tnące w belce - zadanie 11
T(x) = (-q) * a + 4*q*a = 3*q*a

Podstawiając wartości x dla charakterystycznych punktów. Dla punktu A:
T(x=0) = (-q) * x = (-q) * 0 = 0

Dla punktu B z lewej strony:
T(x=a) = (-q) * a

Dla punktu B z prawej strony:
T(x=a) = 3*q*a

Dla punktu C:
T(x=2*a) = 3*q*a

zginanie7 - Momenty gnące belkę i siły tnące w belce - zadanie 11
Jak widać, w pierwszej metodzie wyszło dokładnie to samo, a więc momenty gnące i siły tnące w belce można liczyć i tak i tak.

Moment zginający belkę – zadanie 10

Witam ponownie, dzisiaj przejdziemy do wytrzymałości i momentów zginających belkę. Tutaj będzie trzeba obliczyć momenty gnące, siły tnące i narysować wykresy. Ale po kolei:

Mamy belkę wmurowaną ścianę i obciążoną momentem, siłą i obciążeniem ciągłym. I widać tutaj 2 przedziały : od punktu A do B i od B do C.

zginanie1 - Moment zginający belkę - zadanie 10

Ponieważ reakcje w ścianie są na końcu belki, to nie ma sensu ich obliczać . W tym konkretnym przypadku wyjątkowo możemy nie uwalniać belki od więzów. 

I jedziemy od lewej strony:

  1. Obliczamy momenty zginające belkę w 3 charakterystycznych punktach na początku i końcu przedziałów: A, B i C.

Aby obliczyć moment zginający belkę w punkcie A zasłaniamy prawie całą belkę tak żeby było widać tylko punkt A i sam początek belki.

zginanie2 - Moment zginający belkę - zadanie 10

I co widać – moment skupiony w punkcie A:

MgA = q * a2

Tak samo postępujemy z punktem B – odsłaniamy tylko punkt B i wszystko co jest na lewo od niego.

zginanie3 - Moment zginający belkę - zadanie 10

Oprócz momentu skupionego w punkcie A pojawia się obciążenie ciągłe:

MgB = q * a² – q * a * a/2 = 0,5*q*a²

i teraz po kolei druga część czyli siła od obciążenia ciągłego q*a razy ramię a/2 czyli odległość połowy (obciążenia ciągłego q) do punktu B. A z tymi znakami to jest tak, że q*a² jest na plusie, bo próbuje PODNIEŚĆ koniec belki, a obciążenie ciągłe jest na minusie, bo chce OPUŚCIĆ koniec belki. Mówiąc inaczej q*a² kręci ZGODNIE ze wskazówkami zegara, a obciążenie ciągłe kręci PRZECIWNIE do zegara.

I dochodzimy do ściany czyli prawie do punktu C odsłaniając całą belkę oprócz punktu C. To tak jakbyśmy chcieli złapać za sam prawy koniec BELKI przy samej ścianie.

zginanie4 - Moment zginający belkę - zadanie 10

MgC = q * a² – q * a * 1,5*a + 4*q*a * a = 3,5*q*a²

Po kolei idąc to pierwsza cząstka pozostaje bez zmian i dalej siła od obciążenia ciągłego działa teraz na ramieniu 1,5*a, bo odległość ściany od środka obciążenia ciągłego jest 1,5*a. Siła 4*q*a działa na ramieniu a.

Rysujemy to co obliczyliśmy i poniżej powstał wykres momentu zginającego belkę:

zginanie5 - Moment zginający belkę - zadanie 10

2. Teraz kolej na siły tnące i analogicznie idziemy od lewej strony:

zginanie2 - Moment zginający belkę - zadanie 10

TA = 0

Zasłaniamy prawie całą belkę i tylko odsłaniamy kawałek lewego przedziału tuż przy punkcie A – widać że żadna siła nie działa w poprzek belki (czyli w pionie-siła tnąca).

Przechodzimy do punktu B z lewej strony czyli odsłaniamy cały lewy przedział w taki sposób, aby nie było widać punktu B:

zginanie6 - Moment zginający belkę - zadanie 10

TBL = -q * a

Jedyna poprzeczna do belki siła (siła tnąca czyli w poprzek belki) którą widzimy to siła od obciążenia ciągłego q. Siła działa w dół i dlatego sobie przyjęliśmy minus

Przemieszczamy się kawałek w prawo, aby było widać cały lewy przedział oraz punkt B i wtedy widać siłę tnącą z prawej strony punktu B:

zginanie3 - Moment zginający belkę - zadanie 10

TBP = -q * a + 4*q*a = 3*q*a

Oprócz obciążenia ciągłego w poprzek belki działa jeszcze 4*q*a.

Przesuwamy się jeszcze dalej w prawo aż dojdziemy prawie do ściany czyli tuż na lewo od ściany:

zginanie4 - Moment zginający belkę - zadanie 10

TC = -q * a + 4*q*a = 3*q*a

Rysujemy to co obliczyliśmy i powstał wykres siły tnącej:

zginanie7 - Moment zginający belkę - zadanie 10

I to jest pierwsza metoda, a w kolejnym odcinku trochę inna i trudniejsza metoda