Wskaźnik wytrzymałości przekroju na zginanie – wytrzymałość

Cześć wszystkim i dzisiaj powiemy coś o wskaźniku wytrzymałości przekroju na zginanie. Wiąże się on bardzo mocno z omawianym niedawno momentem bezwładności.

http://blog-student.com/moment-bezwladnosci-przekroju-zadanie-36/

Nie może być zbyt teoretycznie i dlatego powiedzmy sobie, co to jest ten wskaźnik wytrzymałości przekroju na zginanie:

A więc to taka cecha przekroju (na przykład przekroju poprzecznego belki) która opisuje kształt i wymiary przekroju. Dlatego jest tu mowa o kształcie i wymiarach przekroju, ponieważ te cechy wpływają na wytrzymałość przykładowej belki na zginanie.

Żeby obliczyć wskaźnik na zginanie po pierwsze musimy znać moment bezwładności przekroju i wynosi on na przykład Jxc. Wtedy wskaźnik wytrzymałości będzie równy:

ilorazowi

momentu bezwładności

przez

odległość od osi centralnej do najdalszego punktu przekroju:
Wx = Jxc : ymax
wskazniknazginanie1 150x150 - Wskaźnik wytrzymałości przekroju na zginanie - wytrzymałość
Miarą wskaźnika wytrzymałości na zginanie jest metr do potęgi trzeciej lub milimetr do potęgi trzeciej [m³ lub mm³].
Dla przykładu możemy policzyć taki wskaźnik dla przekroju kwadratowego o boku a. Moment bezwładności wyniesie:
Jxc = a * a³ / 12
Wobec tego wskaźnik wytrzymałości przekroju na zginanie:
Wx = Jxc / ymax = (a * a³ / 12) / (a/2) = a³ / 6
wskazniknazginanie2 150x150 - Wskaźnik wytrzymałości przekroju na zginanie - wytrzymałość
Ponieważ środek ciężkości kwadratu jest w połowie jego wysokości, to najdalszy punkt przekroju ymax oddalony od osi centralnej równa się połowie wysokości czyli a/2.

I to na razie tyle a wkrótce wykorzystamy wiedzę o wskaźniku na zginanie w zadaniach.

Skręcanie wału – wytrzymałość – zadanie 35

Witam wszystkich i dzisiaj będzie trochę nietypowe i jednocześnie proste zadanie ze skręcania wałów.
Wał o minimalnej średnicy czynnej równej d= 20 mm przenosi moc P=10kW przy prędkości obrotowej n=1000obr/min.
skrecanie12 - Skręcanie wału - wytrzymałość - zadanie 35

Autor zadaje pytanie

OBLICZ MAKSYMALNE NAPRĘŻENIE SKRĘCAJĄCE WAŁ

Na sam początek warto przypomnieć co to znaczy średnica czynna:
Jest to średnica wałka, która mieści się w przekroju pod rowkiem wpustowym na najmniejszej średnicy wału i na poniższym rysunku oznaczono ją d.
skrecanie13 - Skręcanie wału - wytrzymałość - zadanie 35
1. Mając prędkość obrotową obliczymy prędkość kątową wału:
ω = π * n / 30 = π * 1000obr/min / 30 = 105rad/s

2. Mając moc i prędkość kątową obliczymy moment przenoszony

i jest to

iloraz mocy i prędkości kątowej:
M = P / ω = 10 000W / 105rad/s = 95,2Nm = 95 200Nmm

3. Znając minimalną średnicę czynną obliczymy wskaźnik wytrzymałości przekroju na zginanie:
W = π * d³ / 32 = π * 20³ / 32 = 785mm3

4. Maksymalne naprężenie skręcające jest ilorazem przenoszonego momentu oraz wskaźnika wytrzymałości przekroju na zginanie:
τs = M / W = 95 200Nmm / 785mm3 = 121MPa

Prawda że łatwe?

Ścinanie sworzni – wytrzymałość – zadanie 34

Witam wszystkich i dzisiaj będzie zadanie ze ścinania sworzni. Na obrazku widzimy połączenie sworzniowe i dana jest siła rozciągająca F szerokość blachy s, dopuszczalne naprężenia ścinające dla sworznia kt, dopuszczalne naprężenia rozciągające dla blachy kr.
scinanie5 - Ścinanie sworzni - wytrzymałość - zadanie 34
Autor zadaje pytanie:

OBLICZ WYMAGANĄ ŚREDNICĘ d SWORZNIA I GRUBOŚĆ g BLACHY
Jeżeli jest podane dopuszczalne naprężenie ścinające kt dla sworznia i rozciągające kr dla blachy, to wynika że trzeba ułożyć DWA warunki wytrzymałościowe:
na ścinanie dla sworznia z którego obliczymy minimalną wymaganą średnicę
na rozciąganie dla blachy z którego obliczymy wymaganą grubość

No to zaczynamy:

Warunek wytrzymałościowy na ścinanie dla sworznia:
F / (2*π*d² / 4 ) < kt
W mianowniku wystąpiło 2 razy pole koła o średnicy d (czyli π* d² / 4), ponieważ mamy 2 powierzchnie ścinane sworznia (tak jak widać na poniższym rysunku, sworzeń zostanie ścięty na 2 powierzchniach).

scinanie4 - Ścinanie sworzni - wytrzymałość - zadanie 34
4*F / (2*π* d² ) < kt
0,64*F / ( d² ) < kt
0,64*F = d² * kt
Po przekształceniu otrzymujemy minimalną średnicę sworznia:
d = √(0,64*F / kt)

Warunek wytrzymałościowy na rozciąganie dla blachy:
F : ( g * (s-d) ) < kr
W mianowniku występuje iloczyn grubości blachy g oraz długości s-d i jest to SZEROKOŚĆ BLACHY pomniejszona o ŚREDNICĘ SWORZNIA – obrazowo są to dwie zakreskowane powierzchnie na poniższym obrazku.
scinanie6 - Ścinanie sworzni - wytrzymałość - zadanie 34
F < g * (s-d) * kr
Z tego wynika wymagana grubość blachy:
g = F / [ (s-d) * kr ]

Wytrzymałość – trójkierunkowy stan naprężenia – zadanie 32

Witam ponownie i dzisiaj zrobimy zadanie z trójkierunkowego stanu naprężenia:

Mamy walec o średnicy D i wysokości 2*D i na ten walec od góry naciska siła F. Dany jest modul Younga E, stala Poissona dla materialu walca.

rozciaganie20 - Wytrzymałość - trójkierunkowy stan naprężenia - zadanie 32

Autor zadaje pytanie:

OBLICZ ZMIANĘ POLA POWIERZCHNI WALCA PO PRZYŁOŻENIU SIŁY F

Warto sobie obrać układ współrzędnych i niech o osie x i y będą leciały równolegle do podstawy, a oś z będzie jednocześnie osią walca i będzie leciała do góry.

Na początek piszemy 3 równania opisujące trójkierunkowy stan naprężenia

x = x/E – *y/E – *z/E [1]

y = y/E – *x/E – *z/E [2]

z = z/E – *x/E – *y/E [3]

i tak jak wcześniej mówiliśmy te 3 równania ZAWSZE wystąpią w tego typu zadaniach. I teraz jak spojrzymy na nie dokładniej to widać że mamy 6 niewiadomych:

– odkształcenia względne wzdłuż 3 osi – x, y , z

– naprężenia wzdłuż 3 osi – x , y , z

I teraz to zaczyna być logiczne, że potrzebujemy 6 równań żeby policzyć 6 niewiadomych. A ponieważ już mamy 3 (te powyżej) , to musimy wymyśleć 3 dodatkowe.

Wiadomo że wzdłuż osi równoległych do podstawy naprężenie wynosi ZERO, ponieważ na tworzącą walca (boki walca) nic nie naciska.

x = 0 [4]

σy = 0  [5]

Wiadomo że naprężenie wzdłuż osi z (osi walca – w pionie) wyniesie tyle co siła F podzielona przez pole podstawy walca.

z = F : ( 0,25 * * D) = 1,3*F : D2

Mamy teraz 6 równań i 6 niewiadomych . Jak wstawimy równania [4] , [5] i [6] do równań [1] , [2] oraz [3] to dalej pójdzie z górki:

x = /E – */E – *1,3*F / ( E * D2 ) [1]

y = /E – */E – *1,3*F / ( E * D2 ) [2]

z = 1,3*F / ( E * D2 ) – */E – */E [3]

Po uproszczeniu to wygląda trochę lepiej:

x = (- *1,3*F / ( E * D2 ) [1]

y = (- *1,3*F / ( E * D2 ) [2]

z = 1,3*F / ( E * D2 ) [3]

Jak widać powyżej, mamy już policzone odkształcenia względne we wszystkich kierunkach, czyli o ile PROCENTOWO zmienią się wszystkie prostopadłe do siebie wymiary walca – średnica i wysokość.

Wiemy że średnica wynosiła D, a jak nacisnęliśmy walec od góry siła F to średnica (która się zwiększyła) wyniosła:

D + D * x = D + D* *1,3*F / ( E * D2 ) = D + * 1,3 * F / ( E * D )

czyli suma początkowej średnicy D i tego odcinka o ile ona się zwiększyła.

Wysokość zmniejszy się i wyniesie:

2*D – 2*D*z = 2*D – 2*D*1,3*F / ( E * D2 ) =

= 2*D – 2,6*F / ( E * D )

czyli początkowa wysokość 2*D minus to o ile walec zmniejszył wysokość.

Pole powierzchni jest sumą

powierzchni tworzącej

oraz

dwukrotnej powierzchni podstawy:

S = 2 * * D2 : 4 + D * * 2 * D = 0,25 * * D2 + * 2 * D2 =

= 2,25 * * D2

Po odkształceniu to samo pole wyniesie:

S + S = 2,25 * * ( D + * 1,3 * F / ( E * D ))2

Czyli zmiana pola wyniesie:

S = 2,25 * * ( D + * 1,3 * F / ( E * D ))2 – 2,25 * * D2

Prawda że łatwe?

Wytrzymałość złożona – zginanie i skręcanie – zadanie 29

Dzisiaj zrobimy kolejne i trochę nietypowe zadanie z wytrzymałości złożonej.

Wytrzymałość złożona – zadanie 23

Belkę o średnicy d i długości 2*a wmurowano w ścianę i obciążono na lewym końcu momentem skręcającym q*a² i obciążeniem ciągłym q.

zlozona13 - Wytrzymałość złożona - zginanie i skręcanie - zadanie 29

Wiadomo, że a=10*d. Autor zadaje pytanie:

OBLICZ NAJWIĘKSZE NAPRĘŻENIE ZREDUKOWANE

1.Belka może być rozciągana, ścinana, zginana lub/i skręcana.

W tym przypadku widać, że belka nie będzie rozciągana, ponieważ żadna siła nie działa WZDŁUŻ belki.

2.A jak będzie ze ŚCINANIEM ?:

Na odcinku AB poprzecznie do belki działa obciążenie ciągłe q. I jak to będzie w poszczególnych punktach i przedziałach? Tradycyjnie bierzemy KARTKĘ i będziemy odsłaniać poszczególne części belki.

zlozona14 - Wytrzymałość złożona - zginanie i skręcanie - zadanie 29

Teraz zasłaniamy tak, żeby widzieć tylko lewy koniec belki i punkt A:

TA = 0

bo tutaj jeszcze żadna siła nie działa w poprzek.

W kolejnym kroku odsłaniamy cały lewy przedział AB:

zlozona15 - Wytrzymałość złożona - zginanie i skręcanie - zadanie 29

TB = (-q) * a

ponieważ w poprzek belki działa obciążenie q na długości a.

Następnie odsłaniamy całą belkę:

zlozona16 - Wytrzymałość złożona - zginanie i skręcanie - zadanie 29

TBC = (-q) * a

Siła tnąca policzona, to można zrobić wykres.

zlozona17 - Wytrzymałość złożona - zginanie i skręcanie - zadanie 29

3.Ścinanie załatwione – przyszła pora na ZGINANIE.

Ponownie zasłaniamy tak, żeby widzieć tylko lewy koniec belki i punkt A:

zlozona14 - Wytrzymałość złożona - zginanie i skręcanie - zadanie 29

MgA = 0

Kolejno odsłaniamy cały lewy przedział AB:

zlozona15 - Wytrzymałość złożona - zginanie i skręcanie - zadanie 29

MgB = q*a * a/2 = 1/2*q*a2

Belkę zgina siłą q*a działającą na ramieniu a/2.

Na koniec odsłaniamy całą długość belki:

zlozona16 - Wytrzymałość złożona - zginanie i skręcanie - zadanie 29

MgC = q*a * 1,5*a = 3/2*q*a²

Kolejno q*a to jest siła, następnie 1,5*a to jest odległość od KARTKI (punktu C) do połowy obciążenia ciągłego q. Wszystko wiadomo o momentach gnących, czyli można narysować wykres.

zlozona18 - Wytrzymałość złożona - zginanie i skręcanie - zadanie 29

4.Teraz zajmiemy się SKRĘCANIEM i widać, że cała belka jest skręcana tym samym momentem q*a²:

MsAB = q*a²

MsBC = q*a²

zlozona19 - Wytrzymałość złożona - zginanie i skręcanie - zadanie 29

5.To już mamy wszystkie wykresy i widać gołym okiem, że w każdym z 3 wykresów największe obciążenie występuje w punkcie C.

I tutaj obliczymy naprężenia zredukowane.

Przekrój belki:

A = * d² / 4

Wskaźnik wytrzymałości przekroju na zginanie:

W = * d³ / 32

Wskaźnik wytrzymałości przekroju na skręcanie:

Wo = * d³ / 16

Naprężenia ścinające w punkcie C:

C = TBC : A = (q * a) : ( * d² / 4) = 1,3 * q * 10 * d / d² = 13 q/d

Naprężenia zginające w punkcie C:

gC = MgC : W = (3/2 * q * a²) : ( * d³ / 32) =

= (32 * 3/2 * q * a²) : ( * d³) = 15 * q * (10*d)² / d³ = 1500 q/d

Naprężenia skręcające w punkcie C:

sC = MsBC : Wo = (q * a²) : ( * d³ / 16) = (16 * q * a²) : ( * d³) =

= 5,1 * q * (10 * d)² / d³ = 510 q/d

Z hipotezy Hubera obliczymy naprężenia zredukowane, czyli takie, które łączą wszystkie naprężenia razem:

redC = √[(rc+gc)² + 3*(c+sc)²] = √ [(gc)² + 3*(c+sc)² ] =

= √ [(1500q/d)² + 3*(13q/d+510q/d)² ] = 1752q/d

Prawda że proste?