Skręcanie wału przenoszącego moc – wytrzymałość – zadanie

Witam wszystkich i dzisiaj będzie trochę nietypowe i jednocześnie proste zadanie ze skręcania wału przenoszącego określoną moc.

https://blog-student.com/wytrzymalosc-zadanie-13-skrecanie-walu/
Wał o minimalnej średnicy czynnej równej d= 20 mm przenosi moc P=10kW przy prędkości obrotowej n=1000obr/min.
skrecanie12 - Skręcanie wału przenoszącego moc - wytrzymałość - zadanie

Autor zadaje pytanie

OBLICZ MAKSYMALNE NAPRĘŻENIE SKRĘCAJĄCE WAŁ

Na sam początek warto przypomnieć co to znaczy średnica czynna:
Jest to średnica wałka, która mieści się w przekroju pod rowkiem wpustowym na najmniejszej średnicy wału . Na poniższym rysunku oznaczono ją listerą d.
skrecanie13 - Skręcanie wału przenoszącego moc - wytrzymałość - zadanie

Tutaj widzimy jeden wpust, ale zdarzają się wałki z dodatkowym drugim i kolejnym wpustem, przy czym wszystkie one będą miały jednakową głębokość.
1. Mając prędkość obrotową obliczymy prędkość kątową wału:
ω = π * n / 30 = π * 1000obr/min / 30 = 105rad/s

2. Mając moc i prędkość kątową obliczymy moment przenoszony

i jest to

iloraz mocy i prędkości kątowej:
M = P / ω = 10 000W / 105rad/s = 95,2Nm = 95 200Nmm

3. Znając minimalną średnicę czynną obliczymy wskaźnik wytrzymałości przekroju na zginanie:
W = π * d³ / 32 = π * 20³ / 32 = 785mm3

4. Maksymalne naprężenie skręcające jest ilorazem przenoszonego momentu oraz wskaźnika wytrzymałości przekroju na zginanie:
τs = M / W = 95 200Nmm / 785mm3 = 121MPa

Prawda że łatwe?

Wytrzymałość na ścinanie sworznia – zadanie 34

Witam wszystkich i dzisiaj będzie zadanie z wytrzymałości ze ścinania sworzni. Na obrazku widzimy połączenie sworzniowe i dana jest siła rozciągająca F szerokość blachy s, dopuszczalne naprężenia ścinające dla sworznia kt, dopuszczalne naprężenia rozciągające dla blachy kr.
scinanie5 - Wytrzymałość na ścinanie sworznia - zadanie 34
Autor zadaje pytanie:

OBLICZ WYMAGANĄ ŚREDNICĘ d SWORZNIA I GRUBOŚĆ g BLACHY
Jeżeli jest podane dopuszczalne naprężenie ścinające kt dla sworznia i rozciągające kr dla blachy, to wynika że trzeba ułożyć DWA warunki wytrzymałościowe:
na ścinanie dla sworznia z którego obliczymy minimalną wymaganą średnicę
na rozciąganie dla blachy z którego obliczymy wymaganą grubość

No to zaczynamy:

Warunek wytrzymałościowy na ścinanie dla sworznia:
F / (2*π*d² / 4 ) < kt
W mianowniku wystąpiło 2 razy pole koła o średnicy d (czyli π* d² / 4), ponieważ mamy 2 powierzchnie ścinane sworznia (tak jak widać na poniższym rysunku, sworzeń zostanie ścięty na 2 powierzchniach).

scinanie4 - Wytrzymałość na ścinanie sworznia - zadanie 34
4*F / (2*π* d² ) < kt
0,64*F / ( d² ) < kt
0,64*F = d² * kt
Po przekształceniu otrzymujemy minimalną średnicę sworznia:
d = √(0,64*F / kt)

Warunek wytrzymałościowy na rozciąganie dla blachy:
F : ( g * (s-d) ) < kr
W mianowniku występuje iloczyn grubości blachy g oraz długości s-d i jest to SZEROKOŚĆ BLACHY pomniejszona o ŚREDNICĘ SWORZNIA – obrazowo są to dwie zakreskowane powierzchnie na poniższym obrazku.
scinanie6 - Wytrzymałość na ścinanie sworznia - zadanie 34
F < g * (s-d) * kr
Z tego wynika wymagana grubość blachy:
g = F / [ (s-d) * kr ]

Rzutowanie brył – rysunek techniczny

Witam wszystkich i dzisiaj zaczniemy nowy temat czyli rysunek techniczny a dokładnie będzie o rzutowaniu brył.

Jeżeli spotka się to z Waszym zainteresowaniem, to będziemy kontynuować.
O rysunku technicznym można czytać wiele mądrych książek i jednocześnie można niewiele rozumieć. To nie zależy ile kto przeczytał, tylko czy rzeczywiście czuje temat . Podobnie jak we wcześniejszych postach także tutaj zaczniemy od podstaw i kolejno przejdziemy do tematów sprawiających największy kłopot. Rysunek techniczny to temat rozległy, ale nie tak rozległy, żeby tego nie zrozumieć.

No to zaczynamy

Zdaniem wielu osób, które spotykam spore zamieszanie powoduje rzutowanie brył i przekroje. Oczywiście że dużo tutaj pomaga zmysł przestrzeni, widzenie przedmiotów w trzech wymiarach albo jak kto sobie to nazwie inaczej. My zwyczajnie musimy pokazać rysowany przedmiot z tylu stron, żeby komuś innemu opowiedzieć (przy pomocy linii i kresek) , jak on wygląda.
Zaczniemy od prostych zadań, w których mamy podane dwa rzuty i na ich podstawie musimy narysować trzeci rzut bryły. To tak na początek coś prostego:
rzutowanie4 - Rzutowanie brył - rysunek techniczny
Oto proste zadanie w którym mamy narysowany główny rzut bryły (na górze po lewo) oraz dodatkowo rzut z góry (na dole po lewo).
Tyle wiadomo, a nie wiadomo, jak wygląda

rzut bryły z lewej strony (znak zapytania na górze po prawo).

Na rzucie z góry widać jakiś element (oznaczony 1), który nie do końca wiadomo, czy wystaje z górnej ścianki, czy jest jakimś wycięciem.
rzutowanie5 - Rzutowanie brył - rysunek techniczny
Jednak jak spojrzymy na rzut główny z boku to w tym miejscu nic nie widać (oznaczenie 2).
rzutowanie6 - Rzutowanie brył - rysunek techniczny
Z tego wynika, że to coś musi być wycięciem w górnej ściance. Wobec tego spróbujmy sobie to wycięcie wyobrazić i wyobraźmy sobie,

jak wygląda cała bryła.

rzutowanie7 - Rzutowanie brył - rysunek techniczny
Teraz widać to wycięcie w górnej ściance i jedyne czego nie wiemy i co nie wynika z podanych rzutów (rzut główny z boku oraz rzut z góry) to wysokość tego wycięcia. I to jest jedyna rzecz, którą musimy sobie założyć.
To jak już widać całą bryłę i to w całej okazałości, to teraz możemy narysować szukany rzut. Ten szukany rzut jest rzutem bryły z lewej strony i widząc ją w całości spójrzmy na tę lewa ściankę (której na początku nie widzieliśmy) i po prostu ją zrzutujmy.
rzutowanie3 - Rzutowanie brył - rysunek techniczny
Teraz to wszystko świetnie widać:
rzut główny z boku – to już było dane w zadaniu
rzut z góry – to też było dane w zadaniu
– i to co najlepsze czyli szukany rzut – zielona ścianka oznaczona ‚1’ i niebieska ścianka w wycięciu oznaczona ‚2’.
Jak już wszystko stało się jasne, to można teraz wszystko przenieść ponownie na

rysunek 2D
rzutowanie8 - Rzutowanie brył - rysunek techniczny
Szukany rzut jest na swoim miejscu.
Prawda że łatwe?

Private: Dynamika – regulator – zadanie 33

Mamy taki regulator, w którym belkę o masie m przymocowano przegubowo w 2/3 długości od dołu do wału.
dynamika12 - Private: Dynamika – regulator – zadanie 33
Wał obraca się z prędkością kątową ω . Autor zadaje pytanie:

O JAKI KĄT α ODCHYLI SIĘ  BELKA?

Po pierwsze
Całość uwalniamy od więzów czyli:
– zastępujemy przegub dwiema prostopadłymi reakcjami
– przykładamy ciężar do belki
– ponieważ całość obraca się, to do belki przykładamy siły odśrodkowe bezwładności

dynamika13 - Private: Dynamika – regulator – zadanie 33

Po drugie
Piszemy równania równowagi, a ponieważ jest to układ PŁASKI ROZBIEŻNY, to piszemy TRZY równania równowagi:
∑Pix = ∫dB –  ∫dB2 – Rx = 0 [1]
∑Piy = Ry – m*g = 0 [2]
∑Mio = ∫dB*x*cosα – m*g*L/6*sinα + ∫dB2*x2*cosα = 0 [3]

Po trzecie
W powyższych równaniach pojawiła się całka i teraz warto ją do końca policzyć, ale na początek dobrze będzie zająć się elementarną siłą dB czyli siłą odśrodkową bezwładności. To jest taka siła (mała siła), która działa na niewielką cząstkę belki o bardzo niewielkiej masie. Chodzi o to, że jak zsumujemy te wszystkie małe elementarne siły dB, to będziemy mieć sumaryczną siłę odśrodkową działającą na belkę.

dB = dm * ω² * x * sinα
Analogicznie elementarna siła odśrodkowa po krótszej stronie belki wyniesie:
dB2 = dm * ω² * x2 * sinα

Teraz stworzymy zależność która mówi, że

Elementarna masa dm ma się tak do całej masy belki m, jak elementarna długość dx do całkowitej długości L:

dm/m = dx / L

z tego wyciągamy dm:

dm = m * dx / L

i wstawiamy do obliczonych wcześniej elementarnych sił bezwładności:

dB = m/L * ω² * x *sinα* dx

dB2 = m/L * ω² * x2 *sinα* dx

Następnie robimy z tego całki i obliczamy je. Pierwsza całka oznaczona od zera do 2/3*L:
∫m/L*ω²*x*sinα dx = m/L*ω²*sinα*1/2*(2/3*L)²  = m/L*ω² *sinα*1/2*4/9*L²  =
= m*ω² *sinα*2/9*L

I druga całka oznaczona od zera do L/3:
∫m/L*ω² *x2*sinα dx = m/L*ω² *sinα*1/2*(L/2)² = m/L*ω²* sinα*1/2*L² /4 =

= m * ω² * sinα * L/8

Trzecia całka oznaczona od zera do 2/3*L:
∫dB*x*cosα = ∫m/L*ω² *x*sinα*dx*x*cosα = m/L*ω²* sinα*cosα*1/3*(2/3*L)³ =
= m*ω² *sinα*cosα*8/81*L²

Czwarta całka oznaczona od zera do L/3:
∫dB2*x2*cosα = ∫m/L*ω² *x2*sinα*dx*cosα x2 =
= m/L * ω² * sinα * cosα * 1/3 * (L/3)³ = m * ω² * sinα * cosα * L²/81

I teraz można to co wyszło z tych wszystkich całek wstawić do równania momentów:
∑Mio = m * ω² * sinα * cosα * 8/81 * L² – m * g * L/6 * sinα +
+ m * ω² * sinα * cosα * L²/81 = 0 [3]

ω² * cosα* 8/81 * L²  – g*L/6 + ω² * cosα * L²/81 = 0
ω² * cosα* 8/81 * L² + ω² * cosα * L²/81 = g*L/6
ω² * cosα* 9/81 * L² = g*L/6
I jak to sie to uprości to mamy coś takiego
cosα = 1,5 * g : ( ω² * L )
Wobec tego kąt odchylenia belki wyniesie:
a = arccos (1,5 * g : ( ω² * L ) )

Prawda że łatwe?

Trójkierunkowy stan naprężenia – zadanie 32

Witam ponownie i dzisiaj zrobimy zadanie z trójkierunkowego stanu naprężenia:

https://blog-student.com/wytrzymalosc-trojkierunkowy-stan-naprezenia-zadanie-31/

Mamy walec o średnicy D i wysokości 2*D i na ten walec od góry naciska siła F. Dany jest modul Younga E, stala Poissona dla materialu walca.

rozciaganie20 - Trójkierunkowy stan naprężenia - zadanie 32

Autor zadaje pytanie:

OBLICZ ZMIANĘ POLA POWIERZCHNI WALCA PO PRZYŁOŻENIU SIŁY F

Po pierwsze – warto sobie obrać układ współrzędnych

i niech o osie x i y będą leciały równolegle do podstawy, a oś z będzie jednocześnie osią walca i będzie leciała do góry.

Po drugie – piszemy 3 równania opisujące trójkierunkowy stan naprężenia

x = x/E – *y/E – *z/E [1]

y = y/E – *x/E – *z/E [2]

z = z/E – *x/E – *y/E [3]

i tak jak wcześniej mówiliśmy te 3 równania ZAWSZE wystąpią w tego typu zadaniach. I teraz jak spojrzymy na nie dokładniej to widać że mamy 6 niewiadomych:

– odkształcenia względne wzdłuż 3 osi – x, y , z

– naprężenia wzdłuż 3 osi – x , y , z

I teraz to zaczyna być logiczne, że potrzebujemy 6 równań żeby policzyć 6 niewiadomych. A ponieważ już mamy 3 (te powyżej) , to musimy

Po trzecie

wymyśleć 3 dodatkowe.

Wiadomo że wzdłuż osi równoległych do podstawy naprężenie wynosi ZERO, ponieważ na tworzącą walca (boki walca) nic nie naciska.

x = 0 [4]

σy = 0  [5]

Wiadomo że naprężenie wzdłuż osi z (osi walca – w pionie) wyniesie tyle co siła F podzielona przez pole podstawy walca.

z = F : ( 0,25 * * D) = 1,3*F : D2

Po czwarte – mamy teraz 6 równań i 6 niewiadomych .

Jak wstawimy równania [4] , [5] i [6] do równań [1] , [2] oraz [3] to dalej pójdzie z górki:

x = /E – */E – *1,3*F / ( E * D2 ) [1]

y = /E – */E – *1,3*F / ( E * D2 ) [2]

z = 1,3*F / ( E * D2 ) – */E – */E [3]

Po uproszczeniu to wygląda trochę lepiej:

x = (- *1,3*F / ( E * D2 ) [1]

y = (- *1,3*F / ( E * D2 ) [2]

z = 1,3*F / ( E * D2 ) [3]

Jak widać powyżej, mamy już policzone odkształcenia względne we wszystkich kierunkach, czyli o ile PROCENTOWO zmienią się wszystkie prostopadłe do siebie wymiary walca – średnica i wysokość.

Dodatkowo wiemy, że średnica wynosiła D, a jak nacisnęliśmy walec od góry siła F to średnica (która się zwiększyła) wyniosła:

D + D * x = D + D* *1,3*F / ( E * D2 ) = D + * 1,3 * F / ( E * D )

czyli suma początkowej średnicy D i tego odcinka o ile ona się zwiększyła.

Wysokość zmniejszy się i wyniesie:

2*D – 2*D*z = 2*D – 2*D*1,3*F / ( E * D2 ) =

= 2*D – 2,6*F / ( E * D )

czyli początkowa wysokość 2*D minus to o ile walec zmniejszył wysokość.

Pole powierzchni jest sumą

powierzchni tworzącej

oraz

dwukrotnej powierzchni podstawy:

S = 2 * * D2 : 4 + D * * 2 * D = 0,25 * * D2 + * 2 * D2 =

= 2,25 * * D2

Po odkształceniu to samo pole wyniesie:

S + S = 2,25 * * ( D + * 1,3 * F / ( E * D ))2

Czyli zmiana pola wyniesie:

S = 2,25 * * ( D + * 1,3 * F / ( E * D ))2 – 2,25 * * D2

Prawda że łatwe?