Moment bezwładności przekroju i twierdzenie Steinera – zadanie 36

Witam ponownie i dzisiaj zrobimy zadanie ze środków ciężkości i momentów bezwładności używając twierdzenia Steinera.
Mamy taki przekrój jak widać na rysunku – dwa półkola złożone w taki oto ciekawy sposób.

srodekciezkosci5 150x150 - Moment bezwładności przekroju i twierdzenie Steinera - zadanie 36

 

Oto jakie pytanie zadaje autor:

OBLICZ POŁOŻENIE ŚRODKA CIĘŻKOŚCI I MOMENT BEZWŁADNOŚCI PRZEKROJU

Na początek obliczymy współrzędne położenia środka ciężkości:

 

Po pierwsze

Podobnie jak w poprzednim zadaniu

http://blog-student.com/mechanika-srodek-ciezkosci-zadanie-16/

Dzielimy figurę na prostsze elementy

Tutaj sprawa jest oczywista – półkole o promieniu a i drugie półkole o promieniu a.
srodekciezkosci6 150x150 - Moment bezwładności przekroju i twierdzenie Steinera - zadanie 36
Oczywiście znamy położenie środka ciężkości takich elementarnych figur jak półkole.

 

Po drugie

 Umieszczamy tak podzieloną figurę w układzie współrzędnych.

Tylko teraz powstaje pytanie, jak to umieścić?
Figura NIE JEST symetryczna i dlatego umieszczamy ją w pierwszej ćwiartce układu współrzędnych, żeby wszystkie współrzędne były na plusie.
srodekciezkosci7 150x150 - Moment bezwładności przekroju i twierdzenie Steinera - zadanie 36

Po trzecie

Kolejny etap to:

Działamy według prostego wzoru:

 

pole półkola1 * ś.c.półkola1 + pole półkola2 * ś.c.półkola2
xc = ———————————————————————————-
całkowite pole figury

 

i zaczniemy od współrzędnej x:

 

    0,5 * π * a2 * (a – 4*a/(3*π)) + 0,5 * π * a2 * (a + 4*a/(3*π))
xc = ——————————————————————————- = a
2 * 0,5 * π * a2

 

To teraz mały komentarz do powyższego wzoru:
srodekciezkosci8 150x150 - Moment bezwładności przekroju i twierdzenie Steinera - zadanie 36
Środek ciężkości elementu składowego przekroju (w tym przypadku półkola) określamy w tym układzie współrzędnych, w którym tę figurę wstawiliśmy. Wiemy, że środek ciężkości półkola znajduje się 4*a/(3*π) od podstawy i jednocześnie w osi symetrii. Czyli w naszym przypadku środek ciężkości jednego półkola przypada w a – 4*a/(3*π), a drugiego półkola wypadnie w a + 4*a/(3*π)) (ilustracja powyżej).
To teraz przejdziemy do współrzędnej y:

0,5 * π * a2 * a + 0,5 * π * a2 * 2 * a
yc = ————————————————- = 1,5 * a
2 * 0,5 * π * a2

 

Po czwarte

 Wykorzystując twierdzenie Steinera

http://blog-student.com/twierdzenie-steinera-podstawy/

obliczymy momenty bezwładności przekroju.

Zaznaczam, że po to obliczyliśmy położenie środka ciężkości, żeby przez ten środek ciężkości przeprowadzić osie CENTRALNE xc i yc. I teraz w kolejnym kroku działamy WYŁĄCZNIE w układzie współrzędnych xc,yc. No to do dzieła:
Ten podział na 2 półkola dalej jest aktualny, a więc moment bezwładności przekroju będzie sumą momentów bezwładności jednego półkola plus drugiego półkola:
Jxc = π * (2*a)4 / 128 + 0,5 * π * a² * (1,5*a – a)² + π * (2*a)4 / 128 + 0,5 * π * a² * (1,5*a – 2*a) ² =
= π * 16 * a4 / 128 + 0,5 * π * a² * (0,5*a)² + π * 16 * a4 / 128 + 0,5 * π * a² * (0,5*a) ² = 0,5 * π * a4

O twierdzeniu Steinera już było, ale taki drobny komentarz do powyższych obliczeń:
Jasna sprawa że π*(2*a)4/128 oznacza moment bezwładności półkola.
srodekciezkosci9 150x150 - Moment bezwładności przekroju i twierdzenie Steinera - zadanie 36
Następnie 0,5 * π * a² oznacza pole półkola i ostatnia cząstka (1,5*a – a) to odległość środka ciężkości pierwszego półkola od osi centralnej całego przekroju (to pokazałem na powyższym szkicu). Teraz moment bezwładności względem osi yc i działamy analogicznie czyli stosujemy twierdzenie Steinera:
Jyc = π * (2*a)4 / 128 + 0,5 * π * a² * (a – 4*a/(3*π) – a) ² +
+ π * (2*a)4 / 128 + 0,5 * π * a² * (a – 4*a/(3*π) + a) ² = 6,4 * a4

Prawda że proste?

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *