Dynamika – tarcie – zadanie 6

To może teraz zadanie z dynamiki w którym występuje tarcie:

NA POZIOMYM STOLE NA KARTCE LEŻY PUDEŁKO O MASIE m. WSPÓŁCZYNNIK TARCIA MIĘDZY KARTKĄ I PUDEŁKIEM WYNOSI µdynamika1 - Dynamika - tarcie - zadanie 6

I jak wiemy co tu się dzieje to teraz jest takie pytanie:

Z JAKIM PRZYSPIESZENIEM NALEŻY RUSZYĆ KARTKĄ, ŻEBY PUDEŁKO ZJECHAŁO Z KARTKI?

Czyli tradycyjnie:

  1. Uwalniamy pudełko od więzów,

czyli zastępujemy kartkę siłami:

– nacisku

– i tarcia ponieważ jest dany współczynnik tarcia 

dynamika2 - Dynamika - tarcie - zadanie 6

Siła tarcia jest w tą stronę co przyspieszenie ponieważ pudełko będzie chciało zjechać w stronę przeciwną – siła tarcia jest zawsze przeciwna do ruchu który ma nastąpić – przeszkadza ruchowi.

No i teraz piszemy:

2. Równanie dynamiczne

Równanie w kierunku zgodnym z przyspieszeniem:

m * p = N * µ [1] 

Mechanika-dynamika-jeszcze raz podstawy

Równanie w kierunku prostopadłym do przyspieszenia:

m * 0 = N – m*g [2]

Z drugiego równania obliczamy nacisk:

N = m*g

i wstawiamy do równania [1]:

m * p = m * g * µ

Dzielimy obie strony równania przez m i dostajemy przyspieszenie z jakim należy ruszyć kartką żeby pudełko zjechało z kartki:

p = g * µ 

I to jest odpowiedź na postawione pytanie. Prawda że proste?

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *