Dynamika – energia – zadanie 30

Dzisiaj zrobimy kolejne i trochę inne zadanie z dynamiki z energii:

Dynamika – energia – zadanie 21

Na rysunku widać że pudło startuje z prędkością początkową i zjeżdża po równi, w drugim etapie jedzie po drodze poziomej i w trzecim etapie wjeżdża po równi. Każdy z 3 odcinków odpowiada drodze s.

dynamika9 - Dynamika - energia - zadanie 30

Pytanie na jakie szukamy odpowiedzi to:

JAKA MUSI BYĆ PRĘDKOŚĆ POCZĄTKOWA PUDŁA, ŻEBY PRZEJECHAŁO WSZYSTKIE 3 ODCINKI O DŁUGOŚCIACH s?

Po pierwsze

Ustalamy siły zewnętrzne działające na pudło w każdym z 3 odcinków.

dynamika10 - Dynamika - energia - zadanie 30

Jak widać na pudło działa:

  • ciężar m*g
  • nacisk N1 , N2 lub N3
  • tarcie μ*N1 , μ*N2 lub μ*N3

 

Po drugie

Piszemy równanie mówiące, że

ZMIANA ENERGII KINETYCZNEJ UKŁADU

RÓWNA SIĘ

PRACY WYKONANEJ PRZEZ SIŁY ZEWNĘTRZNE

ΔEk = ∑L

Ponieważ w tym zadaniu mamy 3 odcinki, po których porusza się pudło, to będziemy mieć 3 etapy kiedy praca będzie przechodzić w energię.
dynamika11 - Dynamika - energia - zadanie 30
Poszczególne odcinki oznaczono na CZERWONO:
1-2 – odcinek pierwszy – zjazd z równi
2-3 – odcinek drugi – ruch po drodze poziomej
3-4 – odcinek trzeci – wjazd na równię

Kolejno dla poszczególnych odcinków równoważność pracy i zmiany energii:

Ek2 – Ek1 = ∑L1-2
Ek3 – Ek2 = ∑L2-3
Ek4 – Ek3 = ∑L3-4

Po trzecie

Energia kinetyczna pudła w punkcie 1 – początek zjazdu z równi:
Ek1 = m * V² / 2

Energia kinetyczna pudła w punkcie 2 – po zjeździe z równi:
Ek2 = m * V2² / 2

Energia kinetyczna pudła w punkcie 3 – na końcu odcinka poziomego:
Ek3 = m * V3² / 2

Energia kinetyczna pudła w punkcie 4 – po wjeździe na równię:
Ek4 = 0

Po czwarte

Suma prac sił zewnętrznych na poszczególnych odcinkach:
Odcinek 1-2 – praca siły tarcia i ciężaru:
∑L1-2 = m*g*s*sinα – N1*m*s

Odcinek 2-3 – praca siły tarcia:
∑L2-3 = (-N2)*m*s

Odcinek 3-4 – praca siły tarcia i ciężaru:
∑L3-4 = (-m)*g*s*sinα – N3*m*s

Na podstawie tego co powyżej powstaną 3 równania równoważności pracy i energii – trzy bo są 3 odcinki ruchu pudła:

Pierwszy odcinek:
m*V2² / 2  – m*V² / 2 = m*g*s*sinα – N1*m*s

Drugi odcinek:
m*V3² / 2 – m*V2² / 2 = (-N2)*m*s

Trzeci odcinek:
0 – m*V3² / 2 = (-m)*g*s*sinα – N3*m*s

Po piąte

W ten sposób powstał układ 3 równań i teraz policzymy niewiadome:
V2 , V , N1 , V3 , N2 , N3
6 niewiadomych i 3 równania czyli potrzeba 3 dodatkowych równań. Najbardziej stosowne będzie obliczenie nacisków N1 , N2 oraz N3 na 3 kolejnych odcinkach.

dynamika10 - Dynamika - energia - zadanie 30
Pierwszy odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N1:
∑Piy = N1 – m*g*cosα = 0
Nacisk podczas zjazdu z równi:
N1 = m*g*cosα

Drugi odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N2:
∑Piy = N2 – m*g = 0
Nacisk podczas jazdy po drodze poziomej:
N2 = m*g

Trzeci odcinek – piszemy sumę rzutów sił na oś równoległą do niewiadomej N3:
∑Piy = N3 – m*g*cosα = 0
Nacisk podczas wjazdu na równię:
N3 = m*g*cosα

To jak już mamy policzone wszystkie naciski N1 , N2 i N3 to teraz to wstawimy do równań równoważności pracy i energii:
m*V2² / 2 – m*V² / 2 = m*g*s*sinα – m*g*cosα*m*s [1]
m*V3² / 2 – m*V2² / 2 = (-m*g )*m*s [2]
0 – m*V3² / 2 = (-m)*g*s*sinα – m*g*cosα*m*s [3]

Na początek bierzemy równanie [3] i obliczymy z niego prędkość na końcu odcinka poziomego V3:
m*V3² / 2 = m*g*s*sinα + m*g*cosα*m*s
V3² / 2 = g*s*sinα + g*cosα*m * s
V3² = 2*g*s*sina + 2*g*cosα*m*s
V3² = 2*g*s* ( sina + cosα*m )
V3 = √ [2*g*s * ( sina + cosα*m )]

Jak wstawimy V3 do równania [2] to można obliczyć V2:
m*2*g*s* ( sinα + cosα*m ) / 2 – m*V2² / 2 = (-m*g )*m*s
m*2*g*s * ( sinα + cosα*m ) – m*V2² = 2*(-m*g )*m*s
2*g*s * ( sinα + cosα*m ) – V2² = 2*(-g )*m*s
V2² = 2*g*s * ( sinα + cosα*m ) – 2*g*m*s
V2² = 2*g*s * ( sinα + cosα*m – m )
V2  = √ [2 * g * s * ( sinα + cosα*m – m )]

Jak wstawimy V2 do równania [1] to obliczymy szukaną początkową prędkość V:
m*2*g*s * ( sinα + cosα*m – m ) / 2  – m*V² / 2 = m*g*s*sinα – m*g*cosα*m*s

m*2*g*s * ( sinα + cosα*m – m ) – m*V²  = 2*m*g*s*sinα – 2*m*g*cosα*m*s

2*g*s * ( sinα + cosα*m – m ) – V²  = 2*g*s*sinα – 2*g*cosα*m*s

V² = 2*g*s * ( sinα + cosα*m – m ) – 2*g*s*sinα + 2*g*cosα*m*s

V² = 2*g*s * ( sinα + cosα*m – m – sinα + cosα*m )
V² = 2*g*s*m * ( 2*cosα – 1 )

Czyli prędkość początkowa jaką musi mieć pudło, żeby dojechać do punktu 4 wynosi:

V = √[2*g*s*m * ( 2*cosα – 1 )]

Prawda że łatwe ?

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *