Dynamika – energia – zadanie 21

Mamy takie oto zadanie z energii:

energia2 - Dynamika - energia  - zadanie 21

Większa masa wisi na linie, która jest na górze przełożona przez krążek i leci do mniejszej masy która leży na powierzchni. Tutaj współczynnik tarcia wynosi . autor zadaje pytanie:

JAKĄ PRĘDKOŚĆ OSIĄGNIE WIĘKSZA WISZĄCA MASA PO PRZEBYCIU DROGI H ?

 

Po pierwsze

 

To teraz ustalmy w którą stronę ten cały układ jedzie:

Nie ma mowy o żadnej prędkości na starcie (tak zwana chwila początkowa) , a więc wszystko startuje ze startu zatrzymanego.

Wisząca większa masa M pod własnym ciężarem spada w dół i ciągnie mniejszą masę, która jedzie w prawo. Ponieważ oba pudła połączono nierozciągliwą liną, to oba jadą z taką samą prędkością.

energia3 - Dynamika - energia  - zadanie 21

Po drugie

 

Jeżeli wiadomo, jak to działa, to zaznaczamy siły ZEWNĘTRZNE działające na układ. W tym przypadku są to:

– ciężar m*g działający na masę m

– nacisk N działający na masę m

– tarcie N* działające na masę m

– ciężar działający na masę M

 

Po trzecie

 

Z równoważności pracy i energii wynika że zmiana energii kinetycznej układu jest równa wykonanej pracy:

Mechanika-dynamika-jeszcze raz podstawy

Ek2 – Ek1 = L

Układ rusza ze startu zatrzymanego, a więc początkowa energia kinetyczna:

Ek1 = 0

Energia kinetyczna końcowa będzie związana z ruchem ciał posiadających masę:

Ek2 = M * V² / 2 + m * V² / 2

i tak jak napisano wcześniej obie masy, duża i mała, jadą z taką samą prędkością V.

I teraz prawa strona równania:

Pracę wykonują siły, które są RÓWNOLEGŁE do przesunięcia. W tym przypadku równoległe do przesunięcia są:

– ciężar wiszącego pudła – pudło jedzie w dół i jego ciężar też działa w dół

– tarcie działające na mniejsze pudło – pudło jedzie poziomo i tarcie też działa poziomo.

Praca równa się iloczynowi SIŁY razy PRZESUNIĘCIE, a więc prawa strona równania będzie wyglądać tak:

L = M * g * H – N * * H

Powyżej widać, że tarcie działa na takiej samej drodze H jak przesunięcie w pionie dużego pudła, ponieważ oba pudła połączono nierozciągliwą liną. Całe równanie będzie wyglądało tak:

M * V² / 2 + m * V² / 2 – 0 = M * g * H – N * * H

To teraz policzymy niewiadome:

Jak widać nie znamy prędkości V i nacisku N. Uwalniamy od więzów pudło o mniejszej masie m czyli:

energia4 - Dynamika - energia  - zadanie 21

– przykładamy ciężar m * g

– zastępujemy podłoże naciskiem N i tarciem N *

– zastępujemy linę siłą naciągu S

Kolejno piszemy sumę rzutów na oś y, ponieważ tam występuje nieznany nacisk N:

Piy = N – m*g = 0

czyli nacisk na lżejsze pudło:

N = m * g

i wstawiamy to do ogólnego równania:

M * V² / 2 + m * V² / 2 – 0 = M * g * H – m * g * * H

Mnożymy obie strony równania przez 2:

M * V² + m * V² = 2 * M * g * H – 2 * m * g * * H

i wyciągamy kwadrat prędkości przed nawias:

V² * (M+m) = 2 * M * g * H – 2 * m * g * * H

i z tego wynika szukana prędkość V :

V² * (M+m) = 2*g*H * (M – m * )

V = √ [2*g*H*(M – m*) : (M+m)]